Psychology Working Group

Tara Brinkman, PhD Ellen van der Plas, PhD

An NCI-funded Resource

Scope of Research

Outcomes and interventions involving:

- Neurocognitive function
 - Neurocognitive questionnaire, CNS Vital Signs
- Psychosocial function
 - Emotional distress, pain, sleep
 - Social attainment
 - Functional independence
- Health-related quality of life
 - SF-36

Childhood Cancer Survivor Study An NCI-funded resource

Working Group Membership

Name	Discipline	Institution
Pim Brouwers	Neuroscience	National Institute of Mental Health
Austin Brown	Epidemiology	Baylor College of Medicine
Lauren Daniel	Psychology	Rutgers University
Kim Edelstein	Neuropsychology	Princess Margaret Cancer Center
Bob Hayashi	Pediatric Oncology	Washington University – St. Louis
Tricia King	Neuropsychology	Emory University
Kevin Krull*	Neuropsychology	St. Jude Children's Research Hospital
Jordan Marchak	Psychology	Emory University
Rachel Peterson	Neuropsychology	Kennedy Krieger Institute/Johns Hopkins University
Kathy Ruble	Nursing	Johns Hopkins University
Satomi Sato	Clinical Psychology	St. Luke's International University, Japan
Fiona Schulte	Psychology	University of Calgary
Lindsay Schwartz	Pediatric Oncology	University of Chicago
Derek Tsang	Radiation Oncology	Princess Margaret Cancer Center
Emily Walling	Pediatric Oncology	University of Michigan
Megan Ware	Health Behavior	University of North Texas
Christopher Weldon	Surgery	Harvard University
AnnaLynn Williams	Epidemiology	University of Rochester

Working Group Progress

- **11** Published/In Press Manuscripts (since 1/1/2023)
 - **3** Currently Submitted Manuscripts
- **18** Analysis/Manuscript in Process
 - 4 Concepts in development
 - 5 New AOIs (total, since 1/1/2023)

Childhood Cancer Survivor Study An NCI-funded resource

Neuro-Oncology

254

27(1), 254-266, 2025 | https://doi.org/10.1093/neuonc/noae119 | Advance Access date 4 July 2024

Neurocognitive outcomes and functional independence in adult survivors of childhood medulloblastoma diagnosed over 3 decades

Chiara Papini[®], Sedigheh Mirzaei, Mengqi Xing, Ingrid Tonning Olsson, Ralph Salloum, Peter M.K. de Blank, Katharine R. Lange, Tricia Z. King, Deokumar Srivastava, Wendy M. Leisenring, Rebecca M. Howell, Kevin C. Oeffinger, Leslie L. Robison, Gregory T. Armstrong, Kevin R. Krull[®], and Tara M. Brinkman[®]

> Childhood Cancer Survivor Study An NCI-funded resource

Papini et al., Medulloblastoma outcomes. Neuro-Oncology, 2024

Historical therapy: surgery + CSI \geq 30Gy, without chemotherapy (n=55)

High-risk multimodal therapy: surgery + CSI ≥ 30Gy + chemotherapy (n=186)

Standard-risk multimodal therapy: surgery + CSI > 0 to < 30Gy + chemotherapy (n=120)
 Table 3.
 Associations Between Treatment Exposures and Neurocognitive Impairment Among Medulloblastoma Survivors Using the Historical Therapy Group as Referent

Model/Predictor and Category	Task Efficiency	Emotional Regulation	Organization	Memory
	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)
Model 1				
Treatment exposure group				
Historical	1.00 (referent)	1.00 (referent)	1.00 (referent)	1.00 (referent)
Standard-risk	0.92 (0.74-1.14)	0.71 (0.42-1.22)	0.95 (0.57-1.56)	1.09 (0.79–1.50)
High-risk	1.00 (0.81–1.22)	1.05 (0.67–1.63)	1.42 (0.93–2.15)	1.23 (0.93–1.63)
Age at diagnosis	0.95 (0.92–0.97)	1.00 (0.93–1.06)	0.97 (0.92–1.02)	1.01 (0.97–1.04)
Female sex (vs. male)	1.27 (1.08–1.48)	1.63 (1.14-2.35)	1.64 (1.20-2.24)	1.25 (1.01–1.54)
Model 2				
Treatment exposure group				
Historical	1.00 (referent)	1.00 (referent)	1.00 (referent)	1.00 (referent)
Standard-risk	0.88 (0.70-1.10)	0.59 (0.34–1.03)	0.79 (0.48–1.32)	0.92 (0.67-1.26)
High-risk	0.97 (0.78-1.19)	0.93 (0.59–1.46)	1.20 (0.79–1.84)	1.07 (0.81–1.41)
Treatment era				
1970–1979	1.00 (referent)	1.00 (referent)	1.00 (referent)	1.00 (referent)
1980–1989	0.99 (0.73–1.33)	0.74 (0.37-1.50)	1.54 (0.80-2.99)	1.27 (0.80–2.02)
1990–1999	1.14 (0.83–1.55)	1.39 (0.69-2.78)	2.83 (1.44–5.57)	2.24 (1.39-3.60)
Age at diagnosis	0.94 (0.91–0.97)	0.97 (0.90–1.04)	0.91 (0.86–0.97)	0.96 (0.92–1.00)
Female sex (vs. male)	1.26 (1.08-1.48)	1.62 (1.13-2.32)	1.64 (1.21-2.23)	1.24 (1.01-1.51)

An NCI-funded resource

Papini et al., Medulloblastoma outcomes. Neuro-Oncology, 2024

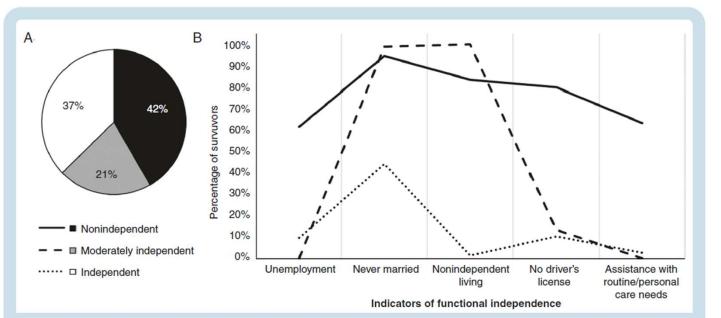
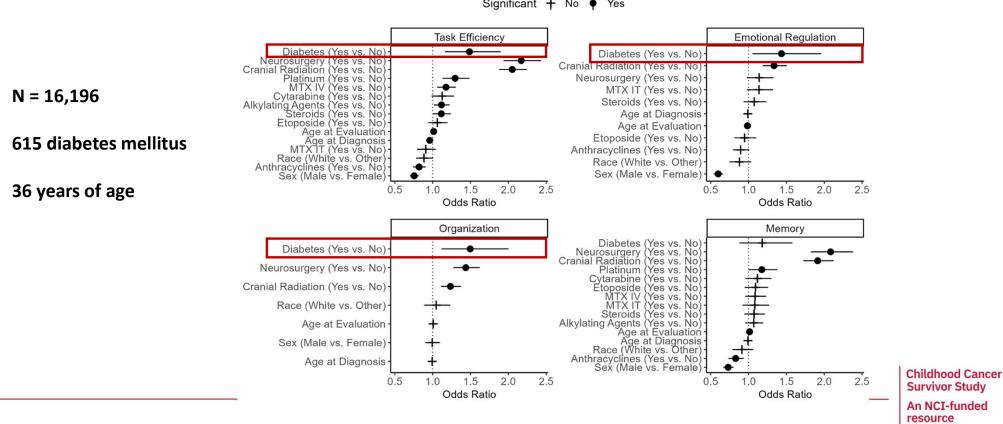


Figure 1. Classes of functional independence among adult survivors of childhood medulloblastoma, obtained through latent class analysis. (A) Percentage of the whole sample categorized in each class of functional independence. (B) Percentage of survivors with a negative outcome on the 5 indicators of functional independence in each class.

Risk factors for non-Independence:

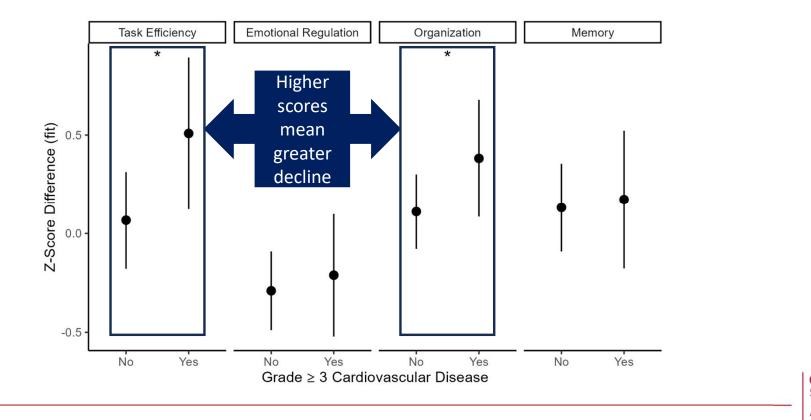
Impaired task efficiency (RR: 1.93)

Chronic Health Conditions:


Sensory-motor (RR:1.24)

Hearing (RR:1.28)

Seizures/epilepsy (RR:1.54)


Childhood Cancer Survivor Study An NCI-funded resource

Webster et al., Diabetes and neurocognition (under review).

Significant + No Yes

Webster et al., Diabetes and neurocognition (under review).

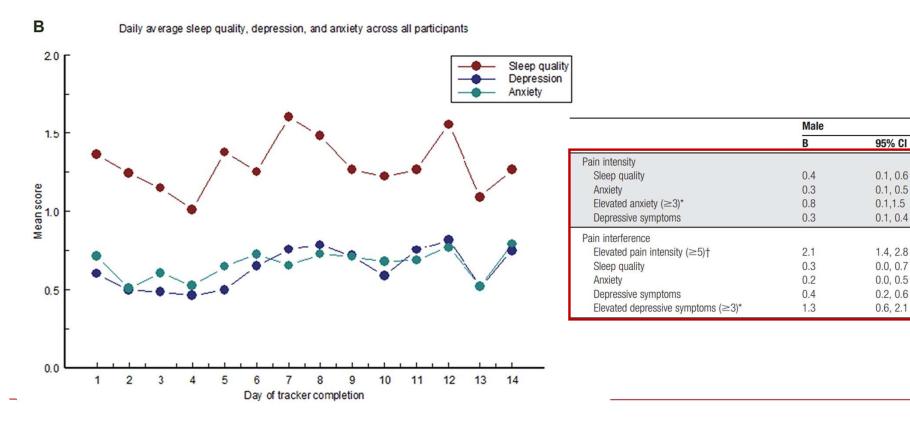
Childhood Cancer Survivor Study An NCI-funded resource

Characterization of chronic pain, pain interference, and daily pain experiences in adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study

Nicole M. Alberts^{a,b,*}, Wendy Leisenring^c, Jillian Whitton^c, Kayla Stratton^c, Lindsay Jibb^d, Jessica Flynn^a, Alex Pizzo^b, Tara M. Brinkman^a, Kathryn Birnie^e, Todd M. Gibson^{a,f}, Aaron McDonald^a, James Ford^a, Jeffrey E. Olgin^g, Paul C. Nathan^d, Jennifer N. Stinson^d, Gregory T. Armstrong^a

Childhood Cancer Survivor Study An NCI-funded resource

Alberts et al., Characterization of chronic pain. Pain, 2024.


≥3 months of persistent/recurrent pain

n = 233	N (%)
Female	118 (50.6)
White Non-Hispanic	207 (88.8)
Diagnosis	
Leukemia	79 (33.9)
CNS tumor	24 (10.3)
Hodgkin lymphoma	24 (10.3)
Non-Hodgkin lymphoma	24 (10.3)
Bone cancer	29 (12.4)
Other	53 (22.8)
	Mean (SD)
Age at evaluation	40.8 (9.0)
Time since diagnosis	32.5 (7.9)

- 41% reported chronic pain
- 32% had pain for more than 10 years
- 64% moderate to severe pain intensity
- 76% moderate to severe pain interference
- 30% moderate to severe anxiety
- 40% moderate to severe depression

Childhood Cancer Survivor Study An NCI-funded resource

Alberts et al., Characterization of chronic pain. Pain, 2024.

Childhood Cancer Survivor Study An NCI-funded resource

P

0.004

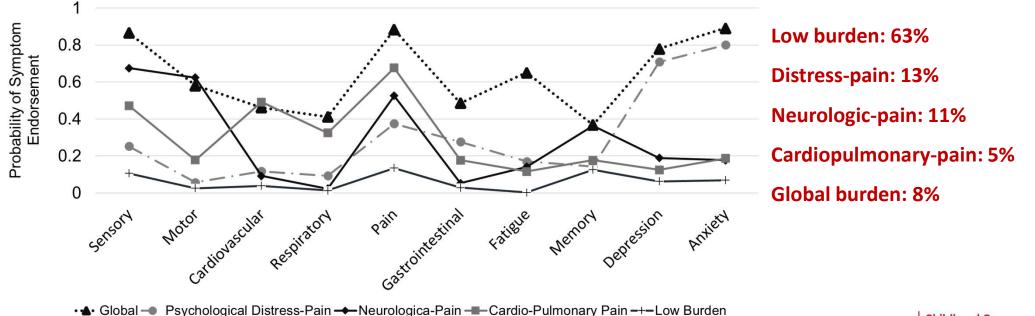
0.003

0.009

0.03

< 0.0001

0.03


0.047

< 0.001

< 0.001

Webster et al., Symptom burden, healthcare use and health behaviors (under review).

Childhood Cancer Survivor Study An NCI-funded resource

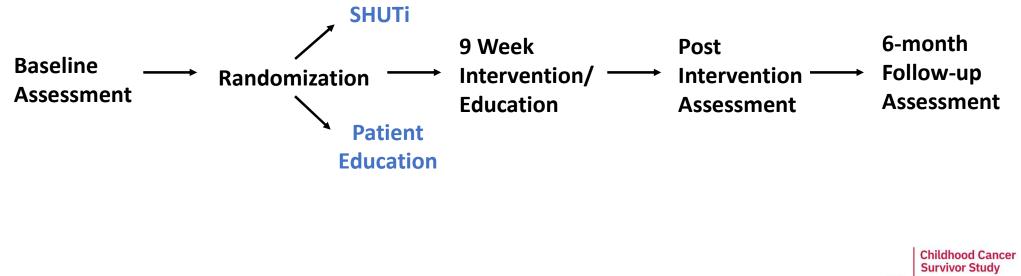
Webster et al., Symptom burden, healthcare use and health behaviors (under review).

Phenotype	Key characteristics	Associated risks	Suggested interventions
Low burden	Few or no symptoms	 Poor health behaviors Healthcare use 	Standard f/u care (SFU)
Psychological distress-Pain	Pain, depression, and anxiety	 Smoking Physical inactivity Emergency room use 	SFU + mental health support, pain management
Cardiopulmonary-Pain	Sensory, cardiac, respiratory, and pain	↑ Smoking ↑ Physical inactivity	SFU + exercise, heart health strategies, pain management
Neurologic-Pain	Sensory, motor, pain, and memory problems	 Physical inactivity BMI Emergency room use 	SFU + exercise, cognitive support, pain management
Global	Sensory, motor, cardiac, respiratory, pain, depression, and anxiety	 Healthcare use Health behavior risk 	Comprehensive interdisciplinary care

An NCI-funded resource

MPIs: Tara Brinkman and Kevin Krull (St. Jude Children's Research Hospital)

Title: Impact of eHealth intervention for insomnia on late effects of childhood cancer


Funding Source: National Cancer Institute (R01); \$4,271,243

Aims:

- 1. To examine the <u>efficacy of an eHealth intervention for improving symptoms of insomnia</u> among adult survivors of childhood cancer
- 2. To determine whether <u>treatment of insomnia will improve neurocognitive function</u> in adult survivors of childhood cancer with both insomnia and neurocognitive impairment
- 3. To explore the mediating effects of improved neurocognitive function, emotional distress, and cardiovascular health on the association between insomnia symptoms and quality of life

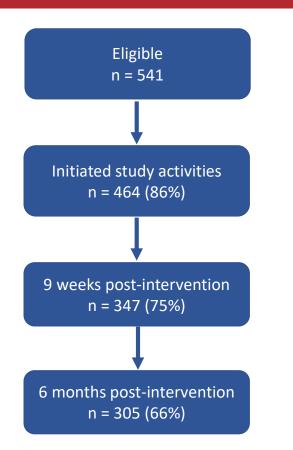
Childhood Cancer Survivor Study An NCI-funded resource

Randomized clinical trial (not blinded) 9-week intervention with 6-month follow-up

Survivor Study An NCI-funded resource

Outcome **Assessment Method** Insomnia Severity Index ٠ **Daily Sleep Diary Insomnia Symptoms** • Actigraphy (WHOOP) ٠ **CNS Vital Signs** ٠ **Neurocognitive Function CCSS Neurocognitive Questionnaire** ٠ **Emotional Health** PHQ-9 **Quality of Life** SF-36 ٠ Physical activity (WHOOP) ٠ Heart rate variability (WHOOP) ٠ Dried Blood Spot Cards: ٠ **Cardiovascular Health** – Inflammation Oxidative stress Vascular function - Lipid profiles

WHOOP UNITE


CCSS

Childhood Cancer Survivor Study An NCI-funded resource

	Control	Treatment
	(n = 268)	(n = 273)
Age at enrollment		
Median (min-max)	43.3 (22.8-65.3)	44.8 (25.7-65.7)
Time since diagnosis		
Median (min-max)	36.4 (21.9-52.8)	37.4 (21.9-52.9)
Sex, n (%)		
Female	198 (73.88)	197 (72.16)
Race/Ethnicity, n (%)		
Non-Hispanic White	226 (84.33)	232 (84.98)
Diagnosis, n (%)		
Leukemia	100 (37.31)	102 (37.36)
Hodgkin disease	30 (11.19)	43 (15.75)
Non-Hodgkin lymphoma	25 (9.33)	24 (8.79)
Bone tumor	31 (11.57)	32 (11.72)
Kidney tumor	42 (15.67)	33 (12.09)
Neuroblastoma	21 (7.84)	23 (8.42)
Soft tissue sarcoma	19 (7.09)	16 (5.86)
		Childho Survivo
		An NCI

CCSS

hildhood Cancer urvivor Study

An NCI-funded resource

Preliminary Results:

Insomnia Severity Index

	Baseline	to 9 weeks	Baseline to	o 6 months
	Control	Treatment	Control	Treatment
Mean change score	-2.54	-5.05	-2.45	-5.75
Effect Size (Cohen's d)	0.58		0.	74

Childhood Cancer Survivor Study An NCI-funded resource

New Ancillary Studies

- **Title:** Internet-delivered cognitive behavioral therapy to improve chronic pain and frailty in survivors of childhood cancer
- PI: Tara Brinkman (St. Jude Children's Research Hospital); R01

Aims:

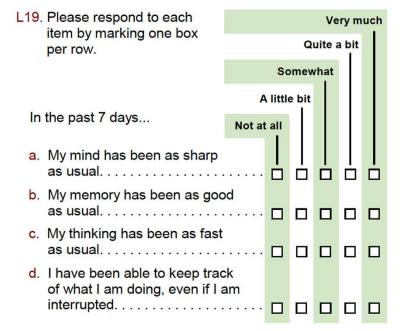
- 1. Evaluate the efficacy of Internet-delivered cognitive behavior therapy (ICBT) vs. attention control (online pain education) for improving pain interference among adult survivors of childhood cancer with chronic pain who are pre-frail or frail
- 2. Examine the impact of ICBT on components of frailty
- 3. Determine whether ICBT impacts symptom multimorbidities, functional outcomes, and opioid use

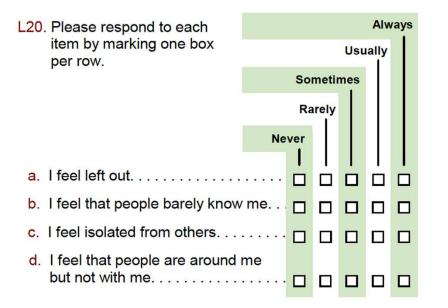
Exploratory: 1) Examine associations between biomarkers of physiologic activity and changes in pain and frailty post-intervention and at 6-month follow-up 2) Determine whether baseline clinical characteristics including mood, anxiety-related factors, and sleep moderate the effect of ICBT on pain and frailty

Childhood Cancer Survivor Study An NCI-funded resource

New Ancillary Studies

Title: Effects of a virtual mind-body resilience program to improve coping and resilience among childhood, adolescent and young adult survivors


PI: Giselle Perez (Harvard/Mass General); R01


Aims:

- 1. Determine the effectiveness of two digital resilience interventions (SMART-3RP-S and SMART-3RP-A) for improving resilience (primary outcome) among CAYA survivors
- 2. To explore moderators (e.g., age, race/ethnicity, language, zip code, cancer/medical history, baseline distress) of the intervention effect on resilience at 6 and 12 months
- 3. Apply a mixed methods design to assess intervention reach, engagement, acceptability, fidelity, sustainability

Childhood Cancer Survivor Study An NCI-funded resource

Plan to Utilize FU7 Newly Frozen Data...

Childhood Cancer Survivor Study An NCI-funded resource

Plan to Utilize FU7 Newly Frozen Data...

- Deficit accumulation index (Williams/Krull). Analyses ongoing. ISLCCC oral presentation
- Longitudinal patterns and predictors of cancer fears in survivors of childhood cancer (Tutelman/Schulte). Analyses recently completed. CCSS Trainee Award
- The impact of sleep trajectories on neurocognitive functioning in adult survivors of childhood cancer (Papini/Brinkman). Analyses recently completed. CCSS Trainee Award; ISLCCC oral presentation

New Proposals:

- Impact of social isolation on perceived cognitive changes (Paes/Brinkman). Proposal in development.
- Pain trajectories and social isolation/loneliness (Argenbright/Brinkman). Proposal in development.
- Impact of physical activity and psychological distress on neurocognitive function over time (Sharkey/van der Plas). Proposal in development. CCSS Trainee Award

Plan for Concept Development Using FU8 Survey Data Focused on Aging...

<u>CNS Vital Signs</u> – Computerized Cognitive Assessment Verbal memory, visual memory, processing speed, executive function

Questions:

- 1. Baseline CNS-VS and perceived cognitive function
- 2. Change in objective function over time (FU9)
- 3. Change in objective function and perceived change
- 4. Change in perceived change over time (FU9)

B16. Please respond to each guestion or statement by		Very much						r	
	marking one box per row.		Quite a bit				I		
			Sor	new	hat			I	
In	the <u>past 7 days</u>	A little bit				I			
	the past r days	Not at	all					I	
a	My mind has been as sharp								
ч.	as usual						ב	Ċ	1
b.	My memory has been as goo								
	as usual	••••					ב	С	1
c.	My thinking has been as fast								
	as usual	•••						С]
d.	I have been able to keep trac								
	what I am doing, even if I an interrupted.						3	C	1

Plan for Concept Development Using FU8 Survey Data Focused on Aging...

CCSS

New Proposals:

- Remote neurocognitive assessment feasibility and validity in CCSS (van der Plas/Krull). Proposal in development.
- Memory problems in aging survivors of childhood cancer (Brinkman/Krull). Proposal in development.

Plan for Concept Development Using FU8 Survey Data Focused on Aging...

Additional Questions:

Neurocognitive and psychosocial predictors of instrumental activities of daily living

• Shopping, food prep, housekeeping, laundry, transportation, medication use, ability to handle finances

a.	Ability	to	Use	Telephone
----	---------	----	-----	-----------

- I operate the telephone on my own look up and dial numbers, etc.
- □ I dial a few well-known numbers
- I answer the telephone but do not dial
- I do not use the telephone at all
- b. Shopping
 - I take care of all my shopping needs
 - □ I shop independently for small purchases
 - □ I need to be accompanied on any shopping
 - I am unable to shop

- c. Food Preparation e. Laundry □ I plan, prepare and serve meals independe □ I can do personal laundry completely I prepare meals if supplied with ingredients I launder small items - rinse socks, stockings, etc. I heat and serve prepared meals All my laundry must be done by others I need to have meals prepared and served f. Mode of Transportation d. Housekeeping I travel independently on public transportation or drive my own car I maintain my house alone or with occasion assistance (e.g., "heavy work domestic helj I arrange my own travel via taxi, but I do not otherwise use public transportation I perform light daily tasks such as dish was I travel on public transportation when assisted bed making or accompanied by another I perform light daily tasks but cannot mainta • My travel is limited to taxi or automobile with acceptable level of cleanliness assistance of another I need help with all home maintenance task l do not travel at all I do not participate in any housekeeping tas
 - g. Responsibility for Own Medications
 - □ I am responsible for taking medication in correct dosages at correct time

- □ I take responsibility if my medication is prepared in advance in separate dosages (pill box)
- □ I am not capable of dispensing own medication
- h. Ability to Handle Finances
 - I manage financial matters independently (budgets, write checks, pays rent, bills, goes to bank), collect and keep track of income
 - □ I manage day-to-day purchases, but I need help with banking, major purchases, etc.
 - □ I am incapable of handling money

Opportunities for Collaboration with Other Working Groups

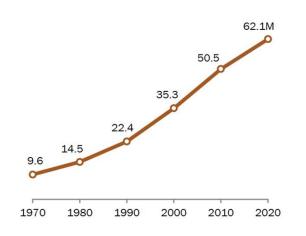
- Evaluation of the impact of physical co-morbidities on psychological outcomes (**Chronic Disease**)
- Impact of psychological function on health behaviors and health care utilization (Cancer Control and Intervention)
- Identification of how genetic moderators of cancer therapy impact psychological outcomes (**Genetics**)
- Machine learning approaches to identify predictors of psychological outcomes; psychometric properties and sensitivity of current measures (Epi/Biostats)

As CCSS Engages with Participants This Year What Would You Like to Learn From Them?

- Exposure, diagnosis, treatment related to COVID; potential longterm impact of COVID (i.e., long COVID)
- Social supports currently available to survivors
- Input and observations from significant others (i.e., dementia; scope of outcomes)

Value Added to Your Working Group by a 2000-2025 Cohort Expansion

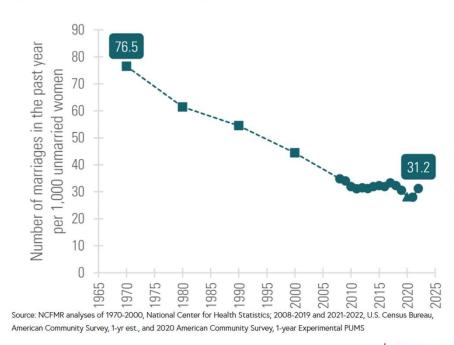
• Neurocognitive impact of contemporary treatment exposures


- Psychosocial adjustment with more modern supportive cancer care
- Outcomes/expectations in Gen Y (millennials), Gen Z, Gen A
- Enhanced diversity in survivor characteristics
- Potential access to parents/caregivers

Special Considerations for a Cohort Expansion Specific to Your Working Group

Representativeness of social characteristics/health determinants

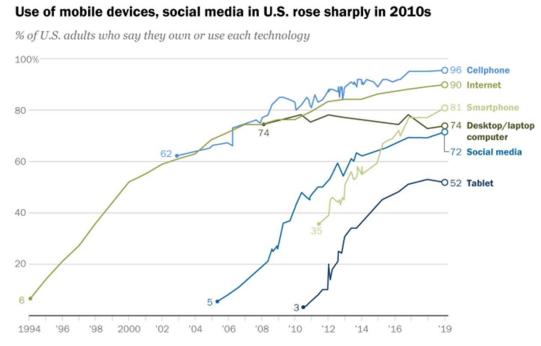
U.S. Hispanic population reached more than 62 million in 2020


In millions

Note: Population totals are as of April 1 each year. Hispanics are of any race.

Source: Pew Research Center analysis of 1970-1980 estimates based on decennial censuses (see 2008 report "U.S. Population Projections: 2005-2050"), 1990-2020 PL94-171 census data.

Consideration of social changes


Childhood Cancer Survivor Study An NCI-funded resource

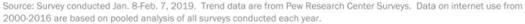

CCSS

Figure 1. Women's Adjusted Marriage Rate, 1970-2022

Special Considerations for a Cohort Expansion Specific to Your Working Group

CCSS

PEW RESEARCH CENTER

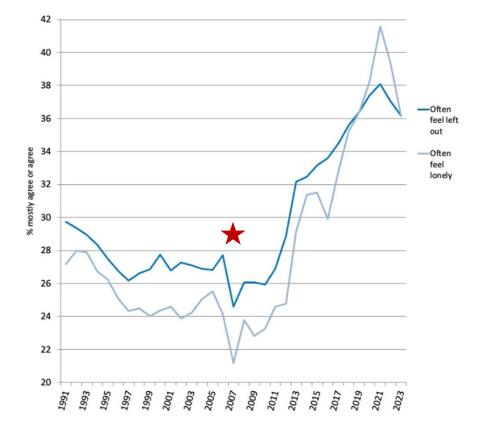


Figure 1: Percent of U.S. teens who agree that they often feel left out or often feel lonely, 1991-2023. Source: Monitoring the Future

Five Year Plan: Progress Update

- 1. Remotely delivered cognitive behavioral therapy to treat emotional distress, pain and pain related disability, and sleep/fatigue
- 2. Remotely delivered psychoeducation, behavioral, and cognitive interventions to facilitate improvement and adaption to neurocognitive deficits
- 3. Evaluate impact of cancer and cancer-directed therapies on directly assessed neurocognitive function in aging survivors

Childhood Cancer Survivor Study An NCI-funded resource

Current Top Priorities: One-Year Deliverables

- Publication of ancillary study/clinical trial outcomes (i.e., SLEEPWELL)
- Complete analyses of initial CNS Vital Signs projects focused on objective assessment of cognitive aging
- Development of additional ancillary intervention projects

Childhood Cancer Survivor Study An NCI-funded resource

Discussion: Opportunities and Threats

Major Threat or Challenge:

- Focus on change over time limits room for innovation/growth in scope
- Limited scope of positive psychological outcomes
 - Resilience, hope, motivation
- Limited data on impact from COVID

Major Opportunity:

Long-term impact on caregivers

Childhood Cancer Survivor Study An NCI-funded resource