
Epidemiology/Biostatistics Working Group Report

CCSS Investigators Meeting June, 2015

1995

- CCSS had 0 publication
- Dial-up access to Internet
- Amazon.com sold its 1st book online
- I was a new PhD who got the great opportunity to work with CCSS founders

2001

- CCSS had published 5 papers
- Amazon.com turned its first profit

- 1. Recent publications
- 2. Ongoing work
- 3. Future focus

1. Recent publications

- 2. Ongoing work
- 3. Future focus

Publications 228

THE LANCET Oncology

Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study cohort

Stefan Essig, Qiaozhi Li, Yan Chen, Johann Hitzler, Wendy Leisenring, Mark Greenberg, Charles Sklar, Melissa M Hudson, Gregory T Armstrong, Kevin R Krull, Joseph P Neglia, Kevin C Oeffinger, Leslie L Robison, Claudia E Kuehni, Yutaka Yasui, Paul C Nathan

Contemporary protocols for ALL therapy							Eligible dose rang	
		COG-AALL0932 SJCRH Total Therapy XV study lov average risk group A		rapy XV study low risk	DFCI protocol (2012)	AIEOP-BFM ALL (2009)	99) CCSS	
	Female	Male	Female	Male	_			
Dexamethasone (mg/m²)	908	1298	1160	1160	1020	210 (plus tapering)	Any	
Prednisone (mg/m²)	A 1	L I		1!		ng)	Any	
Asparaginase (IU/m²)	Ant	inra	acyc	iine			Any	
		U-1	20 m	a/m²				
0-120 mg/m ²						Cumulative anthracycline 0–12		
Daunorubicin (mg/m²)							Cumulative anthracycline 0-12	
Cyclophosphamide (mg/	C.,,				4		0-1000	
Cytarabine (mg/m²)	Cy(onos	phami	ae		Any	
High-dose methotrexate		_		-			Any	
Methotrexate iv (mg/m²	(N_1	NNN r	mg/m ²			Any	
Methotrexate oral (mg/r	•	O I	ooo i	119/111			Any	
Mercaptopurine (mg/m ³							Any	
Thioguanine (mg/m²)							Any	
Vincristine (mg/m²)							Any	
Intrathecal chemotherag (number of doses)	No	rac	diatic	n		positive;	Any 13	
Radiation (Gy)	0	0	0	0	0	0 (18 Gy for CNS positi	ive) 0	

COG=Children's Oncology Group. ALL=acute lymphoblastic leukaemia. SJCRH=St Jude Children's Research Hospital. DFCI=Dana-Farber Cancer Institute. AIEOP-BFM=Associazione Italiana Ematologia Oncologia Pediatrica-Berlin-Frankfurt-Münster. CCSS=Childhood Cancer Survivor Study. iv=intravenous. im=intramuscular. PEG=polyethylene glycol. IT=intrathecal. CNS2/TLP+=CNS status \$5\$ white blood cells per \$\mu\$L cerebrospinal fluid with blasts/traumatic lumbar puncture positive.

Table 1: Cumulative doses of chemotherapy and radiation in present protocols for treatment of standard-risk ALL and definition of dose ranges for inclusion for CCSS subcohort of ALL survivors

	Deaths	Rate*	SMR (95% CI)
All deaths	28	2.5	3-5 (2-3-5-0)
Sex			
Female	11 (39%)	1.8	4-2 (2-1-7-5)
Male	17 (61%)	3.4	3.1 (1.8-5.0)
Time after diagnosis (years)			
5-9	7 (25%)	2.5	8-1 (3-2-16-7)
10-14	10 (36%)	3.7	5-6 (2-7–10-3)
15-19	7 (25%)	2.6	3-0 (1-2-6-2)
≥20	4 (14%)	1.4	1-3 (0-4-3-3)

Data are N or n (%), unless otherwise indicated. SMR=standardised mortality ratio. *Deaths per 1000 person-years.

Table 3: Late mortality in survivors

	Survivors (n=556)	Siblings (n=2232)
Overall chronic health disorders‡§		
Any disorder, grade 1-5	192 (48%)	1058 (51%)
Any disorder, grade 3-5	51 (10%)	157 (7%)
More than one disorder, grade 1–5	156 (32%)	598 (27%)
Multiple disorder, grade 3-5	6 (1%)	18 (1%)

RR or OR (95% CI)*	p value	Number needed to I (95% CI)†	narm
1·3 (1·1 to 1·6)	0-0005	107 (81 to 193)	
2.0 (1.4 to 2.8)	<0.0001	415 (376 to 939)	
1.6 (1.4 to 2.0)	<0.0001	136 (126 to 236)	
1.8 (0.7 to 4.8)	0-21		

Publications 228 Essig et al.

- In every 415 survivors, there will be <u>one</u> <u>excess</u> of Grade 3-5 chronic conditions annually
- In every 107 survivors, there will be <u>one</u> <u>excess</u> of chronic conditions (Grade 1-5) annually

Publications 221

Original Research

Annals of Internal Medicine

Cost-Effectiveness of the Children's Oncology Group Long-Term Follow-up Screening Guidelines for Childhood Cancer Survivors at Risk for Treatment-Related Heart Failure

F. Lennie Wong, PhD; Smita Bhatia, MD, MPH; Wendy Landier, PhD, RN; Liton Francisco, BS; Wendy Leisenring, ScD; Melissa M. Hudson, MD; Gregory T. Armstrong, MD; Ann Mertens, PhD; Marilyn Stovall, PhD; Leslie L. Robison, PhD; Gary H. Lyman, MD, MPH; Steven E. Lipshultz, MD; and Saro H. Armenian, DO, MPH

Schedule for Echocardiogram or MUGA Scans

Age at treatment*	Chest radiation	Total anthracycline dose**	Recommended frequency of ECHO or MUGA***	
	Yes	Any	Every year	
< 1 year	No	< 200 mg/m ²	Every 2 years	
	NU	≥ 200 mg/m ²	Every year	
	Yes	Any	Every year	
1 to 4 years old		< 100 mg/m ²	Every 5 years	
1 to 4 years old	No	≥ 100 to < 300 mg/m ²		
		≥ 300 mg/m ²	Every year	
	Yes	< 300 mg/m ²	Every 2 years	
	169	≥ 300 mg/m ²	Every year	
≥ 5 years old		< 200 mg/m ²	Every 5 years	
	No	≥ 200 to < 300 mg/m ²	Every 2 years	
		≥ 300 mg/m ²	Every year Every 5 years Every 2 years Every year Every 2 years Every 9 year Every 5 years	

^{*}age at first treatment with anthracycline or chest radiation (whichever was given first)

^{**}based on total doses of doxorubicin/daunorubicin or the equivalent doses of other anthracyclines

^{***}MUGA scans may be used for patients who received anthracycline chemotherapy without radiation; **Echocardiograms are the preferred test for those who received radiation** involving the heart because the test provides more detailed information regarding structural issues, including valve structures.

Publications 221 Wong et al.

Research Question

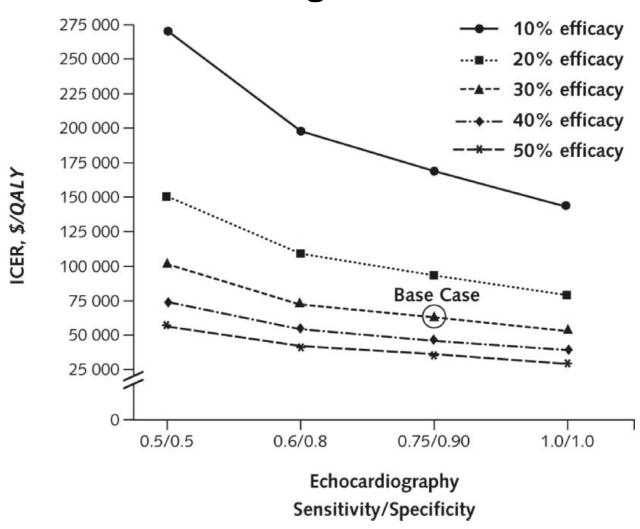
Is the COG guideline for screening asymptomatic left ventricular dysfunction (AVLF) cost effective?

Measure of cost effectiveness

Incremental Cost Effectiveness Ratio [\$ / QALY]

Publications 221 Wong et al.

- Complex Mathematical Modeling/Simulation using Markov State Transition Models
- Used CCSS as the realistic cohort of childhood cancer survivors


Publications 221 Wong et al.

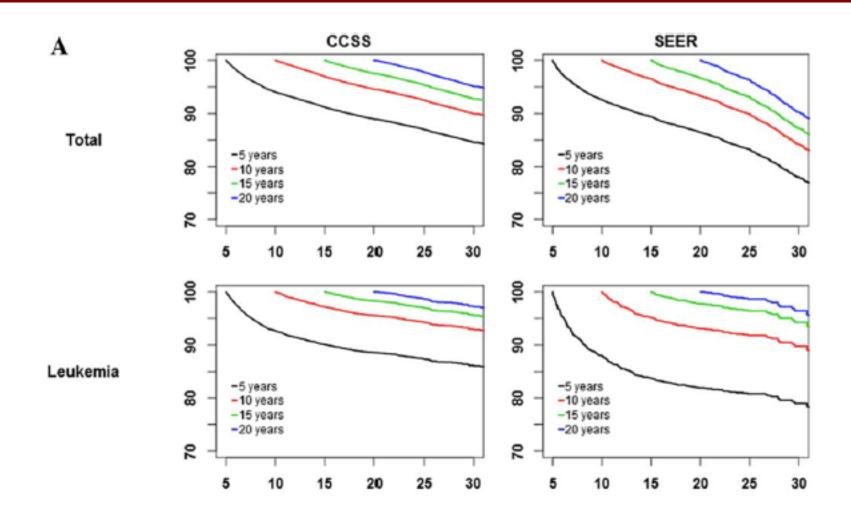
• The COG Guidelines = Cost effective ICER \$61,500/QALY

 A screening with approximately 1/2 the frequency of the COG guidelines: ICER \$33,200/QALY

Publications 221 Wong et al.

Publications 241

Cancer


Original Article

Conditional Survival in Pediatric Malignancies: Analysis of Data From the Childhood Cancer Survivor Study and the Surveillance, Epidemiology, and End Results Program

Ann C. Mertens, PhD¹; Jian Yong, MS²; Andrew C. Dietz, MD, MS³; Erin Kreiter, MSc²; Yutaka Yasui, PhD²; Archie Bleyer, MD⁴; Gregory T. Armstrong, MD, MSCE⁵; Leslie L. Robison, PhD⁵; and Karen Wasilewski-Masker, MD, MSCR¹

Publications 241

TABLE 2. Probability of Death Within the Next 10 Years for CCSS Patients Who Survived 5 Years After Their Cancer Diagnosis by Cause of Death and Cancer Type

						Cause-Specific Death ^a			
	Surviva	l Probability	All-Cau	se of Death	Ne	oplasms	In	fectious	
Diagnosis Group	%	95% CI	%	95% CI	%	95% CI	%	95% CI	
Total	91.2	90.8-91.6	8.8	8.4-9.2	6.3	6.0-6.7	0.3	0.2-0.4	
Leukemia	90.1	89.3-90.9	9.9	9.1-10.7	7.4	6.7-8.1	0.4	0.2-0.5	
Kidney tumors	97.4	96.5-98.2	2.6	1.8-3.5	1.5	0.9-3.9	0	_	
CNS	87.1	85.8-88.5	12.9	11.5-14.2	9.5	8.3-10.7	0.3	0.1-0.5	
Lymphoma	93.1	92.3-94.0	6.9	6.0-7.7	4.4	3.7-5.1	0.3	0.1-0.5	
Neuroblastoma	95.8	94.6-97.0	4.2	3.0-5.4	2.9	1.9-3.9	0.1	0-0.3	
Soft tissue sarcoma/Ewing sarcoma	89.2	87.8-90.6	10.8	9.4-12.2	8.1	6.8-9.3	0.2	0-0.3	
Osteosarcoma/Other bone tumors	90.5	88.7-92.4	9.5	7.6-11.3	6.7	5.1-8.2	0.4	8.0-0	

				Cause-Spe	cific Death	a					
	Cardio	ac/Vascular	E	xternal		Other	Uı	nknown			
Diagnosis Group	%	95% CI	%	95% CI	%	95% CI	%	95% CI			
Total	0.3	0.2-0.4	0.5	0.4-0.6	0.4	0.3-0.5	1.0	0.9-1.1			
Leukemia	0.1	0-0.2	0.3	0.2-0.5	0.4	0.3-0.6	1.3	1.0-1.6			
Kidney tumors	0.4	0.1-0.8	0.3	0-0.6	0.3	0-0.6	0.1	0-0.2			
CNS	0.2	0-0.3	0.6	0.3-0.9	0.6	0.3-0.9	1.7	1.3-2.3			
Lymphoma	0.7	0.4-1.0	0.6	0.3-0.8	0.4	0.2-0.6	0.5	0.3-0.8			
Neuroblastoma	0.2	0-0.4	0.4	0-0.7	0.2	0-0.4	0.4	0-0.9			
Soft tissue sarcoma/Ewing sarcoma	0.5	0.2-0.8	0.5	0.2-0.9	0.4	0.2-0.9	1.1	0.6-1.5			
Osteosarcoma/Other bone tumors	0.4	0-0.8	8.0	0.3-1.4	0.3	0-0.7	0.9	0.3-1.5			

Publications 223

Regression analysis of mixed recurrent-event and panel-count data

LIANG ZHU

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA

XINWEI TONG

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

JIANGUO SUN*

Department of Statistics, University of Missouri, Columbia, MO 65211, USA and School of Mathematics, Jilin University, Changchun 130012, China sunj@missouri.edu

MAN-HUA CHEN

Department of Statistics, Tamkang University, Tamsui, New Taipei 25137, Taiwan

DEO KUMAR SRIVASTAVA

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA

WENDY LEISENRING

Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

LESLIE L. ROBISON

Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA

Publications 237

Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models

Liang Zhu, Hui Zhao, ** Jianguo Sun, **, Wendy Leisenring, ** and Leslie L. Robison **

Publications 223

$$L_n(\theta) = \prod_{i=1}^n \left\{ e^{-\Lambda(C_i) e^{X_i'\beta}} e^{K_i X_i'\beta} \prod_{j=1}^{K_i} \lambda(T_{ij}) \right\}^{r_i} \left[e^{N_{iK_i} X_i'\beta} e^{-\Lambda(T_{iK_i}) e^{X_i'\beta}} \prod_{j=1}^{K_i} \{\Lambda(T_{ij}) - \Lambda(T_{ij-1})\}^{\Delta N_{ij}} \right]^{1-r_i},$$

where $T_{i0} = 0$, $N_{iK_i} = N_i(T_{iK_i})$, and $\Delta N_{ij} = N_i(T_{ij}) - N_i(T_{ij-1})$ for $j = 1, ..., K_i$, i = 1, ..., n. Correspondingly, the log-likelihood function has the form

$$\sum_{i=1}^{n} \sum_{j=1}^{K_i} r_i \log \lambda(T_{ij}) + \sum_{i=1}^{n} \left[-r_i \Lambda(C_i) e^{X_i' \beta} + r_i K_i X_i' \beta + (1-r_i) N_{iK_i} X_i' \beta \right]$$

$$- (1 - r_i)\Lambda(T_{iK_i}) e^{X_i'\beta} + \sum_{j=1}^{K_i} (1 - r_i)\Delta N_{ij} \log\{\Lambda(T_{ij}) - \Lambda(T_{ij-1})\}$$
(2.2)

Publications 223

- N=3,966 CCSS pregnancy questionnaire: one or more pregnancies => a detailed questionnaire
- 697 did not return the pregnancy questionnaire: we only know counts of pregnancies (panel-count data)
- 3269 returned the detailed questionnaire, providing calendar times of pregnancies (recurrent-event data)
- Regression analysis on associations

Publications 220

J Cancer Surviv (2014) 8:460–471 DOI 10.1007/s11764-014-0353-7

Noncancer-related mortality risks in adult survivors of pediatric malignancies: the childhood cancer survivor study

Cheryl L. Cox · Vikki G. Nolan · Wendy Leisenring · Yutaka Yasui ·

Susan W. Ogg · Ann C. Mertens · Joseph P. Neglia · Kirsten K. Ness ·

Gregory T. Armstrong · Les L. Robison

Publications 220

- Nested case-control study
- 445 cases: Died from causes other than recurrence or non-health-related events
- Matched on primary diagnosis, age at baseline questionnaire, time from diagnosis to baseline questionnaire, and time at-risk
- Adjust for treatment exposures & demogr.

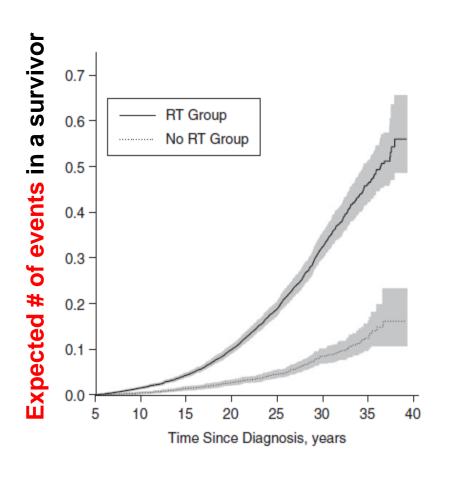
	OR (95 % CI)	P value
Physical activity		
0 days per week	1.72 (1.27–2.34)	< 0.001
1-2 days per week	1.65 (1.17-2.31)	0.004
3+ days per week	1.00	
Health worry and concern ^b		
Current health status		
Good or excellent	1.00	
Fair or poor	1.98 (1.45-2.71)	< 0.001

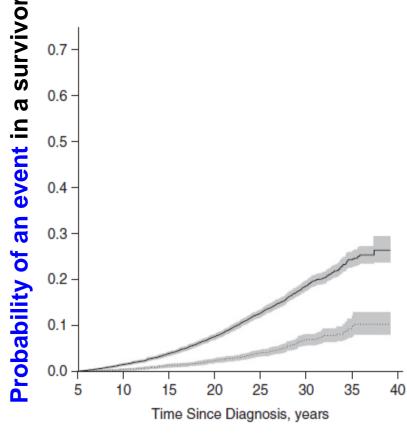
Publications 220

BMI

Underweight	2.58 (1.55-4.28)	< 0.001
Normal	1.00	
Overweight	1.12 (0.84–1.50)	0.43
Obese	1.03 (0.71–1.49)	0.88

Smoking status was not associated.


Publications 239


American Journal of EPIDEMIOLOGY

Estimating the Burden of Recurrent Events in the Presence of Competing Risks: The Method of Mean Cumulative Count

Huiru Dong, Leslie L. Robison, Wendy M. Leisenring, Leah J. Martin, Gregory T. Armstrong, and Yutaka Yasui*

Occurrence of Subsequent Neoplasms by RT

Publications 239 Dong et al.

Two estimates differ in the influence of censoring

Ghosh and Lin (Biometrics 2000)
Our sum of Cls

Censoring after 1st SN

In Ghosh and Lin, it affects CIs of 1st SN, 2nd SN, ...
in our sum of CIs, it affects CIs of 2nd SN, ...

Publications 227

Pediatric Blood & Cancer

Factors Associated With Recruiting Adult Survivors of Childhood Cancer Into Clinic-Based Research

Ann C. Mertens, PhD, 1* Wei Liu, PhD, 2 Kirsten K. Ness, PhD, 3 Aaron McDonald, PhD, 3 Melissa M. Hudson, MD, 3,4 Karen Wasilewski-Masker, MD, MSCR, 1 Smita Bhatia, MD, 5 Paul C. Nathan, MD, 6 Marcia Leonard, NP, 7 Kumar Srivastava, PhD, 2 Leslie L. Robison, PhD, 3 and Daniel M. Green, MD, 3

Motivators to participate

- Visiting with individuals involved in their care (77%)
- Wanting additional health information
 Learning about health problems (35%)
 How to communicate with primary care doctors (36%)
 Information on health screening (51%)
- Altruistic factors
 Helping other pediatric cancer survivors (76%)
 Helping other children with cancer (76%)

- 1. Recent publications
- 2. Ongoing work
- 3. Future focus

High Priority Expansion Studies

EPIDEMIOLO	GY / BIOSTATISTICS	
01.20.14	Late Mortality by Treatment Era	Armstrong/SJCRH
04.02.14	Differences in participant characteristics and changes in treatment characteristics from the original to the expanded cohorts	Mertens/Emory
01.14.14	Association between key therapeutic exposures and outcomes - gaps in knowledge	Bhatia/City of Hope
01.14.14	Risk of Cardiovascular disease and Second Malignancies attributable to therapeutic exposures by Treatment Era	Bhatia/City of Hope

High Priority Expansion Studies

Meeting: 2015 ASCO
Annual Meeting

Presenter: Gregory T.

Armstrong

View Video

Late Mortality by Treatment Era

Armstrong/SJCRH

Differences in participant characteristics and changes in treatment characteristics from the original to the expanded cohorts

Mertens/Emory

Temporal Changes in Treatment Exposures in the Childhood Cancer Survivor Study

Wendy M. Leisenring, John Whitton, Joseph P. Neglia, Daniel M. Green, Todd M. Gibson, Marilyn Stovall, Melissa M. Hudson, Leslie L. Robison, Gregory T. Armstrong, Yutaka Yasui, Ann Mertens

Cancer Prevention and Biostatistics Fred Hutchinson Cancer Research Center

High Priority Expansion Studies

Association between key therapeutic exposures and outcomes - gaps in knowledge

Bhatia/City of Hope

Risk of Cardiovascular disease and Second Malignancies attributable to therapeutic exposures by Treatment Era Bhatia/City of Hope

Multiple concept proposals

Manuscripts Submitted/Circulated

- Derivation of anthracycline equivalence to doxorubicin in relation to late cardiotoxicity (Lieke Feijen, JCO review)
- Direct and indirect effects of anthracycline exposure on cardiac outcomes (Blythe Ryerson/Rebecca Williamson/Mertens)
- Access to Health Information Technology and Health Information Seeking (Mechelle Claridy/Mertens)

Manuscripts Submitted/Circulated

- Inverse Probability Weighting to Adjust for Selection Bias and Drop Out (Chonghzi Di/Leisenring)
- Differences in Long-Term Outcomes by Race/Ethnicity in Childhood Cancer Survivors (Qi Liu/Bhatia/Yasui, ASCO)
- Handling Missing Data due to No Consent for Medical Record Abstraction by Multiple Imputation (Leah Martin/Qi Liu/Yasui)

Concepts Approved/Submitted

- Tiled study design: using temporal overlap as a method to extend longitudinal follow-up among carefully selected time-limited cohorts (Chow)
- Use of an incentive to increase biologic sample (Oragene) return rate (McDonald)
- Cost Effectiveness of COG Breast Cancer Screening Guidelines for Female Survivors of Pediatric Cancers (Wong)
- Radiation dose reconstruction methods for intensity modulated radiation therapy (Howell/Stovall)

- 1. Recent publications
- 2. Ongoing work
- 3. Future focus

PLEASE FEEL FREE TO CONTACT ME IF YOU HAVE ANY INTEREST OR IDEA ON POTENTIAL EPI/BIOSTAT PROJECTS

yyasui@ualberta.ca

Enabling methodology work

- Develop epi/biostat methods that enable promote (CCSS) late effects research
- Lead methodologically-involved investigations that provide a template

Address key quantitative issues in (CCSS) late-effects research

Prediction modeling and its evaluation

GWAS analysis framework

Gene sets/Pathway/Epistasis methodologies

G x T interaction evaluattion

Prediction modeling and its evaluation

GWAS analysis framework

Gene sets/Pathway/Epistasis methodologies

G x T interaction evaluation

Table 1: Summary of SNP-set interaction signals overlapping with WTCCC single-SNP strong signals and single-SNP meta-analysis signals *

Diagona	Logic-Based SNP-set Interaction	WTCCC single- SNP		Meta-A	analysis
Disease	# of Strong Signals	# of Strong Signals	Overlap	# of Significant Loci	Overlap*
BD	13	1	0/1 (0%)	1	1/1(100%)
CAD	16	1	1/1 (100%)	23	7/23 (30%)
HT	15	0	NA	27	8/27 (30%)
RA	72	2	2/2(100%)	10	6/10 (60%)
T1DM	105	5	5/5(100%)	41	12/41 (29%)
T2DM	19	3	3/3 (100%)	7	4/7 (57%)

PLEASE FEEL FREE TO CONTACT ME IF YOU HAVE ANY INTEREST OR IDEA ON POTENTIAL EPI/BIOSTAT PROJECTS

yyasui@ualberta.ca