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Study Aim 
We propose to use the CCSS dataset to empirically determine the utility and possible analytic 
constraints related to the use of a “tiled” study design as a time and resource-efficient way to study the 
association and correlation of biomarkers over time with outcomes of interest.  
 

 Specifically, we propose to use acute lymphoblastic leukemia (ALL) patients free of relapse or 
SMNs at the time of the baseline survey, stratified (or adjusted) by cranial radiotherapy (CRT) 
exposures (none, <20 Gy, ≥20 Gy) and sex, in order to examine the following 2 well-established 
associations: 

1. Relationship of body mass index (BMI; a continuous “biomarker”) with the development 
of selected cardiometabolic conditions (e.g., diabetes, hypertension), which will serve as 
outcomes of interest.  

2. Relationship of the Brief Symptom Inventory-18 (BSI-18; another continuous 
“biomarker”) with subsequent reports of being on prescription psychoactive 
medications (outcome of interest).  

 

 Results from this alternative “tiled” study design will be compared against those estimated from 
a conventional cohort analysis. Specifically, we will examine differences in point estimates and 
the precision of estimates from the 2 analytic methods, and will explore and describe sources of 
potential bias.  

 
Background 

In contrast to many other epidemiological study settings, cancer therapy exposures such as 
chemo- and radiotherapy are time-limited (i.e., transient), but may induce important long-term effects 
on health. There is growing interest in identifying biomarkers measured soon after exposure that may 
be correlated/predictive of longer term clinical outcomes 1,2. However, within a standard <5-year grant 
cycle it is extremely challenging to create a longitudinal cohort study (Figure 1) that can study 
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biomarkers associated with an acute therapy-related toxicity (e.g., cardiotoxicity) measured during or 
shortly after cancer therapy and correlate them with longer-term outcomes. Similarly, there are few 
cohorts with extended follow-up where such data exist for both acute and longer-term changes. Such 
data could be useful in defining early biomarkers predictive of future late effects, and aid in more 
accurately defining survivor subsets who may benefit from more intensive late effects surveillance as 
well as survivor subsets for whom such screening has less benefit.  
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FIGURE 1. Conventional cohort study design. C = censored (e.g., ended follow-up); X = event occurred; Z = 
competing risk event (e.g., death from other cause). 

 
The conventional approach has been to focus on one study period and attempt to select 

surrogate/intermediate endpoints that might be correlated with prior acute changes, and then assuming 
some correlation/associations are identified, to try to reassess those same biomarker associations with 
longer-term changes in a successor study at a different time point either among the original study 
population (ideally), or if not possible, a similar study population. Given time and funding constraints, 
study design and modeling methods that allow for the simultaneous study of both acute and long-term 
changes within multiple concurrent populations selected on the basis of homogeneous cancer 
treatment exposures, and which are followed for relatively brief periods of time, but which, critically, 
overlap temporally (in terms of time since cancer diagnosis) would be extremely useful.  

Specifically, we propose a study design that incorporates both a cross-sectional component as 
well as a longitudinal/cohort component (Figure 2) that defines key intervals off-therapy among 
carefully selected patients who had similar treatment followed longitudinally over ~5 years. This will 
allow direct assessment of longitudinal changes within each group (hypothetical 6 groups noted by 
different colors below, assessed in Yrs, 1, 3, 5 of a 5-yr study; e.g., A1-A5, D1-D5, etc.). Only patients who 
are free of the outcome of interest at the start of each pre-identified interval would be eligible for 
longitudinal assessments.  
 
Yrs off-

treatment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Yr1  A1           D1                        

Yr3   A3             D3                     

Yr5     A5             D5                   

FIGURE 2. Example of temporally overlapping but time-limited cohorts (each defined by its own color; 
e.g., A1-3, D1-D5) sampled across 5 years. Longitudinal relationships within each cohort (e.g., A1-A3, D1-

D5) can be defined across the study period. 
 

However, because of the overlapping time periods among groups, the pattern of biomarker 
values across groups defined by similar time off-therapy at the time of assessment can also be 



compared (Figure 3; e.g., B1 vs. A3, or C1 vs. B3 vs. A5, or D1 vs. C3 vs. B5, etc.). Although these “cross-
sectional” comparisons are not based on same-subject data (i.e., not repeated observations of the same 
person over time), because each group (A1, B1, or C1) will be defined by similar cancer therapy 
exposures initially and will be compared at a similar time off-therapy, one may have greater confidence 
in assuming that any change in biomarker distributions seen consistently across groups could reflect 
longitudinal changes among the overall population treated in this fashion. This assumption could also be 
directly tested by seeing if the distribution/correlation of biomarker profiles across groups assessed at 
the same time off-therapy are similar (e.g., correlation between Biomarkers X and Y are similar for B1 vs. 
A3, C1 vs. B3 vs. A5, etc.). 
 

Yrs off-
treatment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Yr1  A1  B1   C1   D1                       

Yr3    A3 B3  C3  D3                     

Yr5     A5   B5  C5 D5                    

FIGURE 3. Relationships also can be defined between cohorts based on similar time interval since 
treatment (e.g. B1 to A3, C1 to B3 to A5, etc.). 

 
If the distribution and pattern of biomarkers across groups can be assessed, because of the 

temporal overlap of observations, one may be able to then more directly estimate biomarker change 
across the entire time spectrum assessed (Figure 4). Assuming a true association between the biomarker 
and outcome of interest, the robustness of any conclusions drawn from this type of study design will 
likely depend on at least several conditions: 

 
1. Cancer treatment exposures experienced by all the selected cohorts need to be 

homogeneous (and ideally, identical).  
2. Either the biomarker is independent of any other secular effect (i.e., related to birth year), 

or if a secular effect exists, its influence on the biomarker is greatly outweighed by the 
influence from cancer treatment exposures.  

3. Either the biomarker is independent of the normal aging process, or if an aging effect exists, 
the influence from cancer treatment exposures is strong enough to be detectable even after 
adjusting for chronologic age.  

 
Less relevant in this type of study design, compared with a conventional longitudinal study, is the 
stability of biomarker assessment and clinical outcome definitions and assessments because the 
assessments take place within a compressed period of time.  
 
Yrs off-

treatment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Yr1  A1  B1   C1   D1     E1         F1         

Yr3    A3 B3  C3  D3     E3        F3        

Yr5     A5   B5  C5 D5      E5         F5     

FIGURE 4. Relationships can thus be defined both within and between cohorts, allowing one to 
extrapolate relationships established during/soon off-therapy to those many years later. 

 
Related ideas that attempt to use cross-sectional data to infer longitudinal changes have been 

previously published. One common example of this is the comparison of estimates derived from one-



time surveys repeated over time, but in different individuals representing the same population (e.g., 
NHANES) 3. Incorporation of a formal longitudinal component to a cross-sectional study has been added 
by others as well, mainly in the psychology and developmental/aging literature, and has been termed a 
“cross-sequential” study 4,5. Such designs and analysis methods have been applied to the study of acute 
exposures such as spinal cord injury, whose timing has greater similarity to acute time-limited cancer 
treatment exposures 6. It is important to note that specific biases in statistical interpretation may occur 
in situations where the number of cohorts being analyzed greatly out-numbers the number of times an 
individual within each cohort is assessed 7,8 and that some of the conditions proposed in the original 
cross-sequential study design may not be tenable 9.  

To our knowledge, the potentially unique features of our proposed study design is the extension 
of such methods to the study of outcomes following cancer therapy (vs. that related to normal aging), 
the specific requirement for temporal overlap in the selection of patient cohorts needed to facilitate the 
direct estimation of biomarker changes across the entire time spectrum, and also the study of potential 
biomarkers in relation to a downstream clinical outcome. Studies to date have typically focused on the 
assessed parameter (e.g., cognitive performance) alone in relation to some dimension of time, but not 
necessarily in its relationship with some more downstream clinical phenotype (e.g., dementia).  

 
Study Population 

Subjects will include all ALL patients who have not relapsed or developed SMNs as of the CCSS 
baseline survey, and who have not been exposed to spinal XRT. Although chemotherapy for ALL may not 
be uniform over the CCSS time period (diagnosis years 1970-86), and there may be some secular effects 
on BMI during this time period, the major influence on BMI (other than chronologic age) is thought to be 
CRT, and stratification/adjustment of any analysis by the primary CRT categories should result in 
relatively homogeneous treatment groups. Given the potential added effects of spinal XRT to both 
height (and thus BMI indirectly) and potential radiation scatter to the pancreas, kidneys, and heart, the 
small minority of ALL patients who received spinal XRT will be excluded.  

Similarly, BSI-18 has been collected uniformly across multiple time points by CCSS. Survivors 
exposed to CRT, even at lower doses, have reported greater distress as measured by the BSI-18 
compared with non-irradiated survivors 10,11. While the BSI-18 does change with chronologic age, larger 
shifts tend to occur in the elderly and not as much in the age range of the target CCSS population 12-14. 
Thus, demonstrating the feasibility and applicability of this alternative “tiled” study design to examine 
psychological outcomes among cancer survivors would be attractive and an extension of the original 
cross-sequential study methods proposed by psychologists 4. 
 Separate from CRT level, it will be possible to identify 3 distinct cohorts based on diagnosis time 
period (1970-75, 1976-80, 1981-86; each identified by a different color in Figure 5). Although, the 
baseline CCSS questionnaire was administered over a relatively long time period (primarily 1995-2000, 
with some participants responding 1992-94, and 2001-02), temporal overlap among these 3 cohorts can 
still be identified and relationships examined both longitudinally within a given cohort (e.g., A1 vs. A2 vs. 
A3) as well as across cohorts at the same time since diagnosis (e.g., B1 vs. A2). The observation period 
that this CCSS example requires under the standard biomarker study design will thus be 15 years (1995-
2009), well beyond a typical 5-year grant period, but the methods developed should still apply to 
cohorts that have shorter follow-up but are more densely sampled. The maximum duration of follow-up 
that this cohort will allow study on would extend to 39 years (patient treated in 1970, surveyed in 2009), 
well beyond the actual 15 years of observation.  
  



 

Yrs since 
diagnosis 

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Baseline 
1995-                

2000   A1   B1     C1     
FU2003-05      A2   B2   C2    
FU2007-09        A3   B3   C3  

FIGURE 5. Temporal overlap of subcohorts selected within CCSS (A: 1981-86; B: 1976-80; C: 1970-75) 
 
Outcome Variables (Table 1)  

 Scenario 1: clinical end phenotype: diabetes and hypertension, as defined by medication use in 
Armstrong, et al., JCO 2013 15. These will be examined as separate outcomes.  

 Scenario 2: clinical end phenotype: psychoactive medication use, as defined in Brinkman, et al., J 
Cancer Surviv 2013 16. In subanalyses, if sufficient sample size, we will explore specific classes of 
psychoactive medications in relation to BSI-18 subscales (see biomarker section below).   

 
Primary “biomarker”s of interest (independent variable) 

 Scenario 1: BMI as defined in Garmey et al., JCO 2008 17. Given issues of translating BMI values 
in children to those in adults, we will restrict our analyses to those with values reported at age 
≥18 years, similar to Garmey et al.  

 Scenario 2: BSI-18, as used in Brinkman et al., Br J Cancer 2013 11. This instrument was only 
collected among participants age ≥18 years, at baseline, follow-up 2 (2003-2005), and follow-up 
3 (2007-2009). In addition to providing a global measure of psychological distress, it also 
provides subscales related to anxiety, depression, and somatization, which if sufficient sample 
size exists, we will examine in relation to anxiolytic, anti-depressant, and analgesic medication 
use, respectively,  as defined in Brinkman, et al., J Cancer Surviv 2013 16. 

 
Treatment and Other Variables Considered 

 Treatment exposures 
o CRT as part of initial therapy: this will be categorized as none, <20 Gy, and ≥20 Gy as in 

Chow et al, J Pediatr 2007 18. We will initially plan on stratifying our analyses by CRT 
category, but will also examine if more simple multivariate adjustment in a combined 
model will be sufficient.  

o Spinal radiotherapy: patients receiving this will be excluded upfront.  

 Late relapse or secondary malignancy following the baseline CCSS survey. These will be classified 
as competing risk events for any time-to-event analysis. For logistic regression, we will exclude 
individuals with these events.  

 Sex. Given differences in BMI and BSI-18 by sex, analyses can be stratified by sex, though we will 
also explore a combined analysis based on sex-specific normative data to see if that will be 
sufficient.  

 Age and time since cancer diagnosis.  
 
  



TABLE 1. Numbers of ALL survivors with BMI information and who developed diabetes or hypertension, 
and/or with BSI-18 data who reported psychoactive medication use at each study time point (age≥18 
years), excluding survivors with history of relapse, SMN, or exposure to spinal RT. 

 Diabetes  Hypertension  Psychoactive Medication Use 

Questionnaire 
Yes 

N (%) 
No 

N (%) 
 

Yes 
N (%) 

No 
N (%) 

 Yes 
N (%) 

No 
N (%) 

Baseline         

  No CRT 5 (1.1) 436 (98.9)  10 (2.3) 431 (97.7)  88 (22.7) 299 (77.3) 

  15-19 Gy CRT 3 (0.6) 520 (99.4)  5 (1.0) 518 (99.0)  96 (19.7) 392 (80.3) 

  20-29 Gy CRT 5 (0.7) 751 (99.3)  30 (4.0) 726 (96.0)  171 (23.8) 549 (76.3) 

FU2003*         

  No CRT 7 (0.9) 741 (99.1)  27 (3.6) 721 (96.4)  130 (20.0) 521 (80.0) 

  15-19 Gy CRT 9 (1.3) 659 (98.7)  28 (4.2) 640 (95.8)  120 (20.4) 469 (79.6) 

  20-29 Gy CRT 23 (3.9) 573 (96.1)  42 (7.0) 554 (93.0)  100 (18.9) 428 (81.1) 

FU2007*         

  No CRT 14 (2.1) 654 (97.9)  44 (6.6) 624 (93.4)  54 (8.0) 623 (92.0) 

  15-19 Gy CRT 13 (2.2) 571 (97.8)  35 (6.0) 549 (94.0)  63 (10.5) 539 (89.5) 

  20-29 Gy CRT 15 (2.9) 498 (97.1)  57 (11.1) 456 (88.9)  49 (9.1) 489 (90.9) 

*Number of cases (e.g. Scenario 1 [diabetes, hypertension]; Scenario 2 [psychoactive medication use]) shown 
reflect individuals newly reporting these outcomes since the prior survey.  

 
Statistical Analyses  
 To validate the proposed approach, we will compare a hypothetical scenario of 3 cross sectional 
surveys of 3 cohorts that mimic the proposed study design with a conventional analysis of the CCSS 
data, i.e., time-to-event analysis for BMI and cardiometabolic outcomes15, logistic regression for BSI-18 
and psychoactive medication use11. Specifically, using the schema shown in Figure 5, we will examine in 
separate models, the relationships between 1) BMI and our cardiometabolic outcome(s) of interest, and 
2) BSI-18 and psychoactive medication use, for the 3 subcohorts (chosen by original diagnosis years (A) 
1981-86, (B) 1976-80, and (C) 1970-75) across 3 sampling time points (baseline survey, FU2003-05, and 
FU2007-09). At each sampling time point, prevalent cases will be excluded and only newly incident cases 
will be counted for that particular time period.  

We will characterize the association using Poisson regression models for BMI-cardiometabolic 
outcomes and logistic regression models for BSI-18-psychoactive medication use. Specifically, we will 
model the outcomes (rates of cardiometabolic outcomes; odds of psychoactive medication use) as a 
function of BMI and BSI-18 in the most recent questionnaire, respectively, accounting for the other 
covariates listed earlier. The key to this modeling is the hypotheses of how biomarker-outcome 
relationships change or not change longitudinally within cohort and by years since treatment: we are 
assuming that eras of treatment have no effect as we focus on specific treatment exposures offered 
over different treatment eras.  Specifically, we will use these models to specifically test the hypotheses 
on time-related changes in the biomarker-outcome relationship of interest and develop a final model 
that describes the relationship over time concisely. 

The resulting relationships between BMI and the cardiometabolic outcome(s) of interest, and 
separately between BSI-18 and subsequent psychoactive medication use, will then be compared to 



results where the entire eligible CCSS population is analyzed together using conventional analytic 
methods for each of our 2 scenarios11,15.  

If sample size considerations allow doing so, random subsets of the eligible CCSS population of 
varying sizes, sampled according to time since diagnosis as well as CRT level can also be examined. This 
will provide a more robust test of the sample size requirements that the proposed study design would 
require, in comparison to results generated from a conventional analysis using the entire eligible CCSS 
population. We will use simulation based on real CCSS data to address this question as we need to 
assess patterns associated with sample sizes, which cannot be done unless we examine a large number 
of datasets.  
 
Other Considerations 
Biomarkers may present in several different ways: 

 Acute marker – only present early on following exposure. 

 Chronic marker – only present later on following exposure. 

 Acute on chronic marker – presents early on and then diminishes before increasing again later 
on. 
 

Use of BMI and BSI-18 as markers in the CCSS example would only allow us to explore the behavior of a 
“chronic” marker, particularly as we lack either covariate at time of treatment and with the earliest 
value only being for those who are at least 6 years post-diagnosis (diagnosed 1986, baseline survey 
completed in 1992). Other cohorts or simulated data will be required to further explore the 
characteristics of acute markers and acute on chronic markers. Examples of these, using cardiotoxicity as 
an example, may include such things as troponin and natriuretic peptide levels, respectively 1. In the 
situation with “acute” markers, such studies would need to first establish the relationship between any 
“acute” marker with an intermediate end-point (e.g. select echocardiogram parameter using 
cardiotoxicity as an example), and then determine the pattern of change of the intermediate end-point 
over time in relation to the late outcome of interest (e.g. heart failure).  
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