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Background and Rationale

Advances in childhood cancer treatment over recent decades have significantly increased survival rates, with
more than 85% of diagnosed individuals living at least five years beyond their initial diagnosis'=3, leading to a
substantial population of long-term survivors. However, this success comes with a substantial burden of
chronic health conditions that may emerge years or decades after treatment. These late effects span a wide
range of disease domains, including cardiovascular, endocrine, neurological, pulmonary, and second
malignant neoplasms that significantly affect survivors’ quality of life and long-term morbidity and mortality
risk*°.

Previous research has demonstrated that cancer treatment exposures, such as radiation therapy and
chemotherapy, are strongly associated with the development of these late effects®’. Nonetheless, substantial
inter-individual variation in risk remains even among survivors with similar treatment histories, suggesting that
inherited genetic susceptibility plays a critical role*. While genome-wide association studies (GWASs) have
identified several common variants linked to late-effect phenotypes in survivors®'?, the contribution of rare
variants remains largely unexplored. In the general population, rare coding variants, particularly those that are
deleterious or loss-of-function, have been shown to exert larger effects and exhibit higher penetrance than
common variants'®'6, These rare variants are increasingly implicated in complex traits and diseases across
large-scale sequencing efforts in the general population, such as the UK Biobank'” and Icelandic'® population
studies. Importantly, advanced statistical methods, including the aggregation of rare variants across genes
through burden testing or kernel-based methods and expanded polygenic scores (EPGS) have been shown to
substantially improve statistical power in identifying gene-level associations'®'92°, Despite these advances, the
role of rare coding variants in modifying the risk of late effects in childhood cancer survivors has not been
systematically investigated. This gap represents a critical opportunity to expand our understanding of gene-
environment interactions in a population exposed to intensive therapeutic regimens early in life. The availability
of whole-exome sequencing (WES) and whole-genome sequencing (WGS) data, combined with late-effect
phenotypes from two well-characterized childhood cancer survivor cohorts, the St. Jude Lifetime Cohort Study
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(SJLIFE) and the Childhood Cancer Survivor Study (CCSS), provides a unique opportunity to investigate this
question in depth.

Recognizing this critical knowledge gap, we propose a comprehensive investigation into how rare coding
variants influence the risk of cardiovascular disease, subsequent neoplasms, and all-cause mortality among
childhood cancer survivors, as well as their impact on specific diseases within these categories. Utilizing high-
quality whole-genome and whole-exome sequencing data from over 12,000 participants across the well-
characterized SJLIFE and CCSS cohorts, we will employ a multi-faceted approach. This involves grouping rare
coding variants based on clinical pathogenicity and predicted functional impact, followed by rigorous
association testing for both binary and continuous outcomes (only in SJLIFE). It is important to note that this
initial phase of analysis will serve as hypothesis-generating, utilizing foundational models and controlling for
general covariates, and ignoring highly phenotype-specific covariate adjustments for individual diseases, to
identify initial signals of association. We will primarily group late effects by organ system for broad genetic
susceptibility exploration. Once early screening results are ready, we will bring relevant SJLIFE clinical experts
and clinician scientists into the project to provide domain-specific guidance on data interpretation and ensure
appropriate clinical input for subsequent analyses. If sample size permits, we expect to expand our analytical
framework to those individual phenotypes. Furthermore, we will perform time-to-event analyses to investigate
the temporal impact of these rare variants on the time of onset for incident late effects. Finally, to enhance
personalized risk stratification, we will also develop and validate an EPGS, integrating both common and rare
variant effects. All analyses will be conducted independently within each cohort, with subsequent meta-
analysis for comparable phenotypes shared across datasets to enhance statistical power and generalizability.

Specific Aims

Aim 1: To identify gene-level rare coding variant burdens associated with the prevalence or overall occurrence
of late-effect phenotypes, including mortality, in childhood cancer survivors.

e Our study will preliminarily focus on three main composite late effects: cardiovascular disease,
subsequent neoplasm, and all-cause mortality. Individual diseases or cause or mortality with a
minimum of 30 cases will also be included. For less prevalent diseases, inclusion will be determined by
the performance observed in the major late effects mentioned previously, and active collaboration with
relevant working groups will be pursued. When sufficient sample sizes are available, parallel analyses
will be conducted in both the SILIFE and CCSS cohorts for binary late effects. The results from these
separate analyses will then be meta-analyzed to maximize the power for identifying a genome-wide
signal.

Aim 1a: To identify gene-level rare coding variant burden associated with selected late-effect
phenotypes and mortality (all-cause and cause-specific) in childhood cancer survivors.

o This will establish initial associations between variant burden and both the presence of chronic
health conditions and the occurrence of mortality events.

Aim 1b: To examine associations stratified by CTCAE grade and treatment exposures.

o For phenotypes graded using the Common Terminology Criteria for Adverse Events (CTCAE)
v4.03 grading system*, we will stratify analyses comparing CTCAE 0 grade to those >=2 and to
those >=3, to assess whether rare variant burden is associated with severe phenotypes or
mortality (e.g., CTCAE grade 5). For a composite phenotype, the highest CTCAE grading
across all observed events for a survivor will be used. A stratified analysis will be conducted for
survivors who received radiotherapy and/or chemotherapy, particularly anthracycline.

Aim 1c: To characterize variant-level contributions within significant genes.
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o We will examine top signals from gene-level tests to assess effect size distributions, individual
variant contributions, carrier status among cases and controls.

Aim 2: To comprehensively characterize the temporal impact of rare coding variant burden on the age of onset
for incident late-effect phenotypes and the age at death for mortality (all-cause and cause-specific) in childhood
cancer survivors.

e We plan to perform Cox proportional hazards models for all candidate genes (or gene-level rare variant
burdens) to assess their associations with the age of onset for incident late effects and the age at death
for mortality. The analysis will then be stratified by treatment exposure. This aim will provide a dynamic,
longitudinal understanding of genetic risk, discerning whether identified rare variant burdens accelerate
or delay the onset of chronic health conditions or contribute to earlier mortality. This is crucial for
understanding how genetic factors affect the overall survivorship trajectory, including the ultimate
outcome of death.

Aim 3: To develop and validate an expanded polygenic score integrating common and rare variant effects for
improved risk stratification of late effects and all-cause mortality.

e Building on the gene-level rare variant signals from Aim 1, this aim will construct and validate an
expanded polygenic score (EPGS). We then aim to determine if this combined score significantly
improves the identification of childhood cancer survivors at high risk for late effects including mortality
compared to a PGS based on common variants alone. This will allow for risk stratification for both
chronic conditions and the ultimate risk of premature death.

Methods

Study Population

We will include all 5-year survivors of childhood cancer from SJLIFE (N=4,467), CCSS expansion (N= 2,837)
and CCSS original (N=5,013) cohorts with WES data available. These numbers account for the exclusion of
survivors who participated in both SJLIFE and CCSS. All analyses will be conducted independently in each
cohort to account for differential treatment eras, cohort characteristics, and technical variability introduced by
the use of different WES pipelines across CCSS original and expansion cohorts. Additionally, analyses will
also be performed within subgroups stratified by sex, cancer treatment exposures, and genetic ancestry.
Additionally, for SILIFE and CCSS expansion cohorts, where WGS data are available, complementary
analyses leveraging WGS data will be conducted where appropriate, e.g. calculation of common variant
polygenic risk scores in Aim 3.

Qutcome variables

Preliminary analysis is designed as an exploratory analysis of late effect categories in cardiovascular disease,
subsequent neoplasm, and all-cause mortality, as well as their individual diseases with sufficient number of
events (number of cases >= 30) observed in SJLIFE and CCSS cohorts. For continuous traits related to these
late effects from SJLIFE, we will exclude those with greater than 50% missing data.

In SJLIFE, some survivors may have missing medication information, which could influence the accuracy of
laboratory-based biomarkers or clinical measures. To address this, we will apply CTCAE-based adjustments,
considering a CTCAE grade = 3 (e.g., cardiomyopathy grade = 3) as an indicator that the individual is likely
receiving relevant medications, and we will include medication status as a covariate in subsequent models.
Because continuous laboratory measures (e.g., ejection fraction, lipids) are available only within SJLIFE, we
will adopt a two-stage analytical approach: first, evaluating associations between laboratory results and
corresponding clinical outcomes within SJLIFE (e.g., ejection fraction and cardiomyopathy), and then
examining related outcomes such as heart failure in the CCSS cohort.

St. Jude - Confidential



When proven effective, our method will also be applied and expanded to a wide range of late-effect
phenotypes, analogous in structure to a phenome-wide association study (PheWAS)?'. As such, our ultimate
goal is to include all available outcome measures relevant to long-term survivorship in childhood cancer,
leveraging the deep phenotyping available in both SILIFE and CCSS. In SJLIFE, we will analyze both binary
and continuous outcomes, taking full advantage of the longitudinal clinical assessments, laboratory measures,
and quantitative trait data collected in this cohort. In the CCSS cohorts (both original and expansion), analyses
will be limited to binary outcomes, as continuous phenotype data are not available.

e Chronic health conditions, as graded by the Common Terminology Criteria for Adverse Events
(CTCAE) v4.03 grading system*. Analyses will consider comparisons between 0 with >=2 (moderate
and worse), and 0 with >=3 (severe or life-threatening and worse) as appropriate for the late effect.

e Continuous traits related to our primary late effect of interest that are available in SJLIFE, such as
laboratory biomarkers (e.g., lipid levels), anthropometric measurements (e.g., BMI, blood pressure),
and echocardiogram/ electrocardiogram measurements.

e Mortality outcomes will include all-cause mortality and cause-specific mortality from cardiac events and
subsequent neoplasms.

Sociodemographic/clinical variables

Age at measurements of continuous traits
Age at last contact (prevalent analysis)
Age at blood sample collection (incident analysis)
Sex
Age at primary cancer diagnosis
Cancer treatment exposures within 5 years of primary cancer diagnosis
o Any RT (yes/no)
o Field-specific RT with total body irradiation (TBI) (yes/no)
o Any chemotherapy (yes/no)
o Any surgery (yes/no)

Genetic data

For SJLIFE survivors and CCSS survivors, we will use quality-controlled WES data. Additionally, WGS data
will be available and utilized for SJLIFE and CCSS expansion cohorts when calculating polygenic scores in
Aim 3. In both SJLIFE and CCSS, genetic ancestry (European, African and East Asian) of survivors will be
determined using a K-means clustering approach implemented in Admixture??, on the basis of genotype data
of an independent set of common autosomal SNVs and the 1000 Genomes Project samples as ancestral
populations. Survivors will then be grouped into European (%European >80%), African (%African >60%) and
Others based on the estimated ancestry proportions.

P/LP variants

Rare variants will be grouped into genes using four functionally distinct masks to define potential pathogenicity
in a nested manner where the last mask will capture all missense variants. The first mask includes variants
classified as pathogenic or likely pathogenic in ClinVar?®, consistent with previous studies?”?8, and will be
limited to entries without conflicting interpretations that were curated by clinical laboratories from 2015 onward.
The second mask consists of predicted high-confidence loss-of-function (pLoF) variants identified using
LOFTEE?®, which filters for frameshift indels, stop-gain variants, and splice-disrupting mutations while
excluding variants flagged as low confidence. The third mask includes predicted deleterious missense variants,
annotated using SnpEff? and classified based on a consensus of over 90% agreement across in silico
prediction tools within dbNSFP?* (version 5.1a). The last mask will be all missense variants. The rationale for
these masks are described in Statistical analysis Aim 3.

Statistical analysis

St. Jude - Confidential


https://www.zotero.org/google-docs/?2uZk3E
https://www.zotero.org/google-docs/?UywNIj
https://www.zotero.org/google-docs/?7ePi8x
https://www.zotero.org/google-docs/?DcnYLr
https://www.zotero.org/google-docs/?VAdfIl
https://www.zotero.org/google-docs/?QG3ACt
https://www.zotero.org/google-docs/?9VGFeS
https://www.zotero.org/google-docs/?oAuZQf

Aim 1: To identify gene-level rare coding variant burdens associated with the prevalence or overall occurrence
of late-effect phenotypes, including mortality, in childhood cancer survivors.

To evaluate the association between rare coding variants and late-effect phenotypes, i.e. cardiovascular
diseases, subsequent neoplasms and mortality (all-cause and cause-specific), we will conduct gene-based
burden testing independently in the SJLIFE, CCSS original, and CCSS expansion cohorts (accounting for
under-sampling of acute lymphoblastic leukemia survivors). For each (composite) phenotype, we will use
gene-level aggregation of rare variants, applying appropriate regression models based on the outcome

type. For binary phenotypes, we will perform gene-based rare variant burden testing using two complementary
statistical frameworks that address distinct analytical challenges commonly encountered in rare variant
analyses. First, we will employ Firth bias-corrected logistic regression for burden-based test, implemented in
the logistf R package. This method is particularly advantageous for rare variant analyses due to its ability to
mitigate small-sample bias and address issues like separation or non-convergence, thereby providing robust
initial estimates of the overall odds of disease associated with rare variant burden, even when dealing with low-
frequency variant carriers or sparse outcome distributions. At the same time, a kernel based SKAT-O' test
using the SKAT R package will be performed to account for the possible heterogeneous effects of variants.
Second, we will apply REGENIE®® (v4.1), a two-step whole-genome regression framework that efficiently
handles large-scale genotype data while accounting for relatedness and population structure. REGENIE is
well-suited for rare variant testing in binary outcomes, especially when case-control imbalance is present, due
to its ability to leverage ridge regression in the first stage to estimate polygenic background and phenotype
prediction, followed by fast and flexible association testing. We will implement REGENIE using the leave-one-
chromosome-out (LOCO) approach to avoid proximal contamination during model training and ensure
unbiased effect size estimation. For continuous outcomes, available only in the SJLIFE cohort, we will adopt a
similar dual-analytic strategy. Standard linear regression models will be used to estimate associations between
gene-based rare variant burden and quantitative traits, adjusting for relevant covariates such as age at
diagnosis, sex, ancestry, and treatment exposures. In parallel, we will apply REGENIE’s linear regression
module to the same set of outcomes and covariates.

For phenotypes measured in more than one cohort, we will conduct inverse-variance weighted meta-analysis
across SJLIFE, CCSS original, and CCSS expansion cohorts. Meta-analysis will be performed using metal®',
applying fixed-effect models under homogeneity and random-effects models when heterogeneity is detected
(assessed via Cochran’s Q32 test and | Index®3). With only three studies, the pooled estimates will likely have
limited stability. The small number makes it difficult to accurately estimate heterogeneity and increases the
influence of individual studies. Confidence intervals will be wide, and any conclusions will be interpreted
cautiously, especially for the random-effect models. Variants exhibiting evidence of ancestral allelic
heterogeneity (Phet <0.05) will be meta-analyzed using the Han-Eskin random-effects model (RE2) in
METASOFT34. Where possible, ancestry-stratified meta-analysis will also be conducted to explore population-
specific effects and increase the generalizability of findings.

To better understand the relationship between variant burden and late-effect CTCAE grading, we will stratify
analyses for CTCAE-graded phenotypes. This will involve separately examining associations for outcomes of
grade 22, grade =3, and grade=5 (death) against unaffected individuals. Analyzing grade = 2 and grade = 3
separately allows us to capture differences in severity, clinical impact, and underlying risk factors without
diluting signals by pooling heterogeneous outcomes. For significant signals, we will further investigate the
distribution of variant carriers among survivor cases and controls, explore heterogeneity in effect sizes, and
report individual variant-level metrics. These metrics will include carrier counts, odds ratios, and allele
frequencies from external reference datasets like gnomAD?. Crucially, when exploring effect size
heterogeneity, our primary focus will be on stratifying analyses based on major cancer treatments received,
such as radiotherapy and chemotherapy. This approach will help us understand how treatment exposures
interact with rare genetic variants to influence the risk of late effects. Although this may reduce sample size in
individual tests, the potential for increased homogeneity could improve statistical power for certain survivor
subgroups. We will use visualization tools such as forest plots and lollipop plots to highlight key associations.

Aim 2: To comprehensively characterize the temporal impact of rare coding variant burden on the age of onset
for incident late-effect phenotypes and the age at death for mortality in childhood cancer survivors.
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To fully understand how rare coding variants temporarily affect incident late-effect phenotypes, we will use Cox
proportional hazards models for all gene-level rare variant burdens in our cohorts. This method directly models
the immediate risk of late effect onset over time or mortality, helping us determine if specific rare variant
burden speeds up or slows down the time of onset for incident late effects. These models will assess the
relationship between the gene-level rare variant burden (from Aim 1a) and the time until specific late effects
begin, with the time scale starting five years after the primary cancer diagnosis (or time of DNA sample
collection for mortality analyses). All models will be adjusted for the same covariates used in Aim 1, including
age at primary cancer diagnosis, various cancer treatment exposures, sex, and PCs for genetic ancestry. We
will specifically check the proportional hazards assumption for all covariates. If violations occur for key genetic
factors, we will use appropriate extensions, such as time-varying coefficients, to model the dynamic nature of
genetic risk. Additionally, similar to Aim 1, a stratified analysis will be performed for survivors who received
radiotherapy and/or chemotherapy. This will help us investigate how these treatment exposures influence the
temporal impact of rare genetic variants on the age of onset for incident late effects and age at death.

Aim 3: To develop and validate an expanded polygenic score integrating common and rare variant effects for
improved risk stratification of selected late effects and all-cause mortality.

To develop and validate an expanded polygenic score (EPGS) that integrates common and rare variant effects
for improved risk stratification of selected late effects and all-cause mortality, we will construct two score
components and then calibrate their combined contribution to outcome risk within the target cohort. The
common-variant PGS for each late-effect phenotype will be selected in collaboration with clinical investigators.
When available, we will adopt existing scores from the PGS Catalog that match the target ancestral population
and phenotype; otherwise, we will derive scores from suitable GWAS summary statistics matched by ancestry
or from existing SJLIFE publications. For the rare-variant PGS, we will adapt the nested variant-weighting
framework introduced by Dornbos et al.®, tailoring it to our four-mask design to address the challenge of
weighting ultra-rare variants whose individual effects cannot be estimated reliably.

The rare-variant framework proceeds in two steps: gene selection and variant weighting. In step one, we will
employ a “loose” gene selection criterion to maximize sensitivity while preserving biological plausibility. Genes
will be included if they show nominal association with the late effect in Aim 1 burden testing (for example, P <
0.05) and/or have independent evidence of relevance to the phenotype through curated pathway membership
or orthogonal biological data. Pathway evidence will be curated from domains directly pertinent to survivorship
biology and treatment toxicities, for example the DNA damage repair pathway (GO:0006281).

In step two, we will implement nested mask-based weighting within each selected gene using our four
functional masks (ClinVar Pathogenic/Likely Pathogenic curated since 2015 without conflicting interpretations;
high-confidence pLoF by LOFTEE; deleterious missense by dbNSFP v5.1a with 290% consensus; and all
other missense variants). For each gene-by-mask combination, we will estimate an aggregate effect size in the
discovery cohort(s) using gene-level burden models appropriate to the outcome (e.g., logistic regression for
binary endpoints, Cox models for time-to-event), evaluated across prespecified rare-frequency thresholds (e.qg.,
MAF < 1% and < 0.1%). Masks are ordered from most stringent to most inclusive, and each variant inherits the
weight from the most stringent mask it qualifies for. This nested assignment prevents double-counting, assigns
larger weights to more deleterious variants, and provides principled weights to variants not observed in
discovery as long as they map to a mask. An individual’s rare-variant PGS is computed as the sum of these
assigned weights across all qualifying variants they carry in the included genes, accounting for allele dosage
where applicable.

After computing the common and rare components, we will perform an explicit calibration step to map scores
to risk in the target cohort, while keeping per-variant and per-gene weights fixed. For binary outcomes, we will
fit a logistic regression model of the form

logitP(Y = 1) = a + y.Scommon + vy, Srare + X
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where S.ommon @nd S4re are z-scored within the training split and X comprises covariates. This “light” training
calibrates the scaling and intercept to the target cohort without re-estimating individual SNP or variant weights,
thereby preserving comparability and minimizing overfitting. Score standardization and calibration parameters
will be estimated exclusively in the training split and then applied to held-out data. Alternatively, we can use
SJLIFE as our training/exploration set, and using CCSS as test/replication set.

To ensure a fair comparison between the EPGS and the common PGS alone, we will apply an identical
calibration protocol, covariate set, and data splits to both models. Specifically, we will fit a calibrated baseline
model with only the common PGS and covariates, and a calibrated EPGS model that adds the rare
component, using the same training data and regularization settings. We will then evaluate both models on a
strictly held-out test set. For time-to-event outcomes, we will compare Harrell's C-index®” and summarize time-
dependent AUC?8 across prespecified follow-up windows, alongside calibration diagnostics and the integrated
Brier score. For binary outcomes, we will assess discrimination (AUROC, and AUPRC in imbalanced settings),
calibration-in-the-large and slope, Brier score, and decision-curve analysis; intercept-only recalibration will be
performed if outcome prevalence differs substantially from the training split. We will quantify incremental value
using nested model comparisons (e.g., likelihood ratio tests), net reclassification improvement, and integrated
discrimination improvement, and we will report uncertainty via bootstrap or cross-validation where appropriate.

All analyses will be conducted with careful attention to ancestry and transportability. Where available, we will
use ancestry-matched weights for the common PGS; otherwise, we will use multi-ancestry or best-available
estimates and include genetic principal components to adjust for population structure. Prior to combining
components, we will perform conditional and LD-aware sensitivity analyses to verify that common- and rare-
variant signals are largely independent. Model development, calibration, and evaluation will adhere to a
prespecified analysis plan with fixed splits to prevent information leakage, and all final performance metrics will
be reported on the held-out test set to provide an unbiased estimate of clinical utility.

Impact statement
While common genetic variants explain only a fraction of late-effect risk in childhood cancer survivors, the
contribution of rare variants remains largely unexplored. This project will conduct the first large-scale, gene-

level analysis of rare coding variants across a wide range of late effects, providing a foundational resource to
generate new hypotheses about the biological mechanisms of treatment-related toxicity.

Example tables and figures

Table 1. Characteristics of childhood cancer survivors from SJLIFE and CCSS.

Characteristics SJLIFE | CCSS original | CCSS expansion
Age at primary cancer diagnosis (years)
Age at last contact (years)

Sex

Male
Female
Radiation Therapy
Any radiation
Total body irradiation

Chemotherapy
Any
Surgery
Any
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Figure 1. Overview of study design and analysis workflow

Figure 2. Distribution of rare variant carrier burden by phenotype group

e A boxplot or violin plot showing the distribution of rare variant carrier burden per gene across
participants, stratified by major phenotype groups (e.g., cardiovascular, endocrine, neurocognitive,
second malignancy). Carrier burden is based on the number of qualifying rare variants (per mask) per
individual. Separate panels represent the three variant masks (deleterious missense, LOF, ClinVar
P/LP). SJLIFE is shown as the primary cohort; binary traits from CCSS cohorts may be overlaid or
presented in supplementary figures.

Figure 3. Gene-level associations for late effects

e Manhattan style plot or volcano plot displaying gene-level association results for each late effect. The x-
axis shows genes, and the y-axis represents log10 (p-value) from burden tests using the P/LP masks
and MAF <0.1%. Highlighted genes pass multiple testing correction thresholds. Labels indicate gene
names with strongest associations. Sensitivity analyses by ancestry and treatment subgroup will be
shown using colored points or confidence intervals.

Figure 4. Association of rare variant burden with age of onset for incident late effects.

e Kaplan-Meier curves or forest plots derived from Cox proportional hazards models will be used to show
how different levels of rare variant burden (e.g., presence vs. absence of burden in a significant gene,
or high vs. low EPGS quintiles) are associated with the cumulative incidence or age of onset for specific
incident late effects. Separate panels could show results for different significant genes or EPGS strata.

Figure 5. Predictive performance of the Expanded Polygenic Score (EPGS) for late-effect risk.

e Receiver operating characteristic (ROC) curves with corresponding Area Under the Curve (AUC)
values and confidence intervals for binary outcomes, and potentially R-squared values for continuous
outcomes. Separate panels could show results for different late-effect categories (e.g., cardiovascular
disease, metabolic syndrome). The aim is to visually demonstrate the incremental predictive value
gained by incorporating rare variant burden.
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