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Background and rationale 
 

Advances in treatments have dramatically improved long-term survival after childhood, 
adolescent, and young adult (CAYA) cancer to >80%.1,2 However, curative treatments for CAYA 
cancer have significant consequences: ongoing evaluations in established cohort studies have 
shown that survivors face greater risks for a broad range of chronic health conditions (CHCs) 
compared to general population or sibling controls.3-6 These risks vary in magnitude with specific 
therapeutic exposures. For example, female CAYA cancer survivors have ~4-fold to >20-fold 
greater risk for subsequent breast cancer, chiefly depending on chest radiation therapy (RT) 
dose.7,8 Similarly, survivors have up to 6-fold greater risk of cardiomyopathy and myocardial 
infarction, depending on anthracycline and cardiac-directed RT doses,9,10 and ~2-fold greater risk 
of diabetes mellitus, which varies with abdominal RT exposure.11,12 The inter-individual variation 
in risk for developing late effects is substantial among survivors with similar therapeutic 
exposures, suggesting genetic risk factors may contribute. 

Considerable progress has been made in developing genetic risk profiles based on 
polygenic risk scores (PRS), which combine the effects of many germline genetic variants (SNPs) 
identified in genome-wide association studies (GWAS) into a single score. PRS can improve the 
clinical stratification of individuals by their risk for many common diseases.13-17 However, PRS are 
based on genetic effect size estimates that reflect the biases and statistical imprecision of their 
respective GWAS.16,18,19 Preliminary evaluations of PRS derived from general population GWAS 
in survivors have begun to emerge, but the reported magnitudes of association between PRS and 
risk for various CHCs are frequently attenuated in cancer survivors.20-22 These results suggest 
general population PRS may not be the primary driver of genetic risk for late effects among 
survivors. Assessments of interaction associations between PRS and cancer treatments20,22 
suggest these types of interactions also do not fully capture the modifying effects of cancer 
therapies in survivors. 

Novel methods to develop PRS that are not be limited to the genetic risk signals detected 
in the general population may substantially refine late effects risk prediction among survivors. In 
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this proposal, we aim to “generalize” PRS to CAYA cancer survivors, by adapting recent analytic 
methods23-25 that modify PRS based on large GWAS (conducted with general population 
European ancestry samples) to improve their generalizability to diverse (racial/ethnic minority) 
populations. These methods involve selecting different SNPs and/or updating SNP weights, 
leveraging associations from GWAS in much larger (i.e., N>100,000) European samples with 
results from smaller (N<20,000) GWAS in target ethnic populations. With the availability of whole-
genome/whole-exome sequencing (WGS/WES) and genotype data in ~13,000 survivors of the 
St. Jude Lifetime Cohort Study (SJLIFE) and Childhood Cancer Survivor Study (CCSS), we can 
develop a comparable methodological approach to create “survivor-enriched” PRS that 
appropriately account for treatment-specific genetic effects. 

The main objective of this proposal is to develop new genetic risk prediction tools based 
on results from genome-wide gene-treatment (GxT) interaction association analyses conducted 
in survivor cohorts for a diverse preliminary set of CHCs that are among the leading causes of 
morbidity and mortality in survivors of CAYA cancer. CHCs of interest include subsequent 
malignant neoplasms (breast cancer; basal cell carcinoma, multiple subsequent malignant 
neoplasms) and cardiovascular/endocrine diseases and related complex traits (congestive heart 
failure/cardiomyopathy; hypertension; coronary artery disease; diabetes mellitus; body mass 
index; systolic/diastolic blood pressure). For each phenotype, we intend to:  

(a) Identify treatment-specific genetic effects in the survivor data (i.e., from genome-wide GxT 
interaction association analyses);  

(b) Develop survivor-enriched PRS that reconciles treatment-specific genetic effects with 
genetic risk associations included in PRS from published GWAS/meta-analyses with large 
(i.e., N>50,000) general population samples; and  

(c) Compare the predictive ability of both general population PRS and survivor-enriched PRS 
models against other clinical/genetic risk prediction models. 

The proposed research is significant in its potential to help identify survivors at high risk for 
adverse health conditions with personalized genetic risk profiles, enhancing the current treatment 
risk-based guidelines for survivorship care. 
 
Specific hypotheses and aims 
 
We hypothesize that survivor-enriched PRS can better predict CHC risks (or related trait 
variation) in CAYA cancer survivors by considering treatment-specific genetic effects. 
 
Specific Aim 1 (Primary): Create a comprehensive catalog of treatment-specific genetic effects 
for selected CHCs among CAYA cancer survivors.  
 

• We plan to perform genome-wide association analyses to evaluate treatment-specific 
genetic effects in SJLIFE/CCSS survivors for each CHC, including subsequent 
neoplasms and specific cardiovascular and endocrine diseases. The identified 
treatment-specific genetic effects will inform the development of survivor-enriched PRS 
(Aim 2). 

 
Specific Aim 2 (Primary): Construct novel survivor-enriched PRS for the selected CHCs that 
appropriately account for treatment-specific genetic effects, and provide unbiased evaluations of 
their prediction performance in an independent cohort of SJLIFE/CCSS survivors.  
 

• Our approach will create PRS models that include established genetic risk signals seen 
in the general population and results from GWAS performed in survivors (Aim 1). The 
improvement in prediction performance by using survivor-enriched PRS will be 
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evaluated over models with survivor-specific clinical risk factors and published (general 
population) PRS. 

 
Specific Aim 3 (Secondary): Investigate whether survivor-enriched PRS improves CHC risk 
prediction in racial/ethnic minority survivor subgroups.  
 

• PRS based on European ancestry GWAS generalize poorly to racial/ethnic minority 
populations. Since treatment-specific genetic effects may be trans-ethnic, survivor-
enriched PRS may be more informative in predicting CHCs in these subgroups. 

 
Analysis Plan 
 
Research Strategy 
 
Our strategy is to develop an approach to develop prediction models featuring PRS for 10 
CHCs/complex traits (Table 1), incorporating both published results from general population 
GWAS and survivor-enriched PRS, which appropriately account for treatment-specific genetic 
effects observed among survivors. We also aim to provide unbiased evaluations of the prediction 
performance of survivor-enriched PRS. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Our analysis plan entails three major tasks (Figure 1):  

(1) Resource Building, to select suitable reference GWAS resources for baseline comparison 
PRS and to create the treatment-specific genetic effects catalog with results from genome-
wide GxT interaction association analyses in survivors (Aim 1);  

(2) PRS Development and Tuning, to create survivor-enriched PRS incorporating treatment-
specific genetic effects (Aim 2); and  

(3) Model Testing, to provide robust performance evaluations of survivor-enriched PRS in 
independent data (Aim 2).  

This analysis plan requires up to three pre-specified CAYA cancer survivor datasets. The first 
survivor dataset will be dedicated to discovering treatment-specific genetic effects. For some 
phenotypes, we may reserve a second survivor dataset for PRS “tuning”, which involves 
evaluating prediction metrics for a range of hyperparameters to select the best-performing PRS 
(e.g., assuming various selections for p-value and genetic variant linkage disequilibrium cut-offs). 
For phenotypes that are only measured in SJLIFE (e.g., blood pressure), both GxT interaction 
GWAS and PRS tuning will be performed in the same dataset using a cross-validation algorithm. 

Table 1: Chronic health conditions in SJLIFE/CCSS 

Chronic Health Conditions (CHCs) 
SJLIFE 

(N=4,402) 
CCSS 

(N=8,739) Reference GWAS 
Subsequent Neoplasms % cases (N) % cases (N)  
Breast cancer 1.9% (40)  

N=2,090 females 
4.4% (197) 

N=4,525 females 
PMID: 29059683 (N=228,951) 

Basal cell carcinoma 3.3% (146) 7.3% (641) PMID: 31427789 (N=60,692) 
Multiple subsequent, malignant 1.2% (52) 5.1% (450) PMID: 31427789 (N=386,581) 
Cardiovascular % cases (N) % cases (N)  
Hypertension 20.3% (893) 19.4% (1,692) PMID: 31427789 (N=289,307) 
Coronary artery disease 3.3% (146) 3.0% (259) PMID: 26343387 (N=184,305) 
Congestive heart failure or 
cardiomyopathy 

9.0% (397) 5.2% (454) PMID: 30586722 (N=390,142) 

Endocrine % cases (N) % cases (N)  
Diabetes mellitus  19.8% (872) 6.3% (549) PMID: 28566273 (N=159,208) 
Complex traits median (IQR) % cases (N)  
Body mass index (kg/m2) 23.1 (18.5-28.8) - PMID: 25673413 (N=234,069) 
Systolic blood pressure (mmHg) 118 (110-126) - PMID: 31427789 (N=up to 361,411) 
Diastolic blood pressure (mmHg) 68 (63-74) - 
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A final survivor dataset will be set aside strictly for testing the relative predictive performance of 
tuned survivor-enriched PRS, general population PRS, and appropriate clinical models in both 
European and racial/ethnic minority survivor subgroups (Aim 3). 

 
Study Population 
 
For the phenotype-specific genome-wide GxT interaction association analyses, we will use 
survivor cohort data with greater discovery statistical power. We plan to primarily use the CCSS 
original cohort for discovery analyses for second cancer-related phenotypes, since CCSS has 
more participants with long-term follow-up and second cancers are confirmed via pathology 
findings or medical record review. For all other phenotypes, we intend to use SJLIFE for discovery 
analyses since most phenotypes are clinically ascertained in SJLIFE. For some analyses, we will 
consider combining the array-based CCSS original cohort genotype data with whole genome 
sequencing data for the SJLIFE and CCSS expansion cohorts to generate up to three separate 
randomly-sampled datasets for PRS development and evaluation (i.e., for discovery GWAS, PRS 
selection/tuning, validation). 
 
Outcomes of interest:  
 
Outcomes of interest are the ten CHCs/complex traits described in Table 1. For disease 
phenotypes, we will use the chronic disease CTCAE definitions in CCSS and SJLIFE. For 
complex traits, we plan to use SJLIFE campus visit clinical assessment data. Minimum CTCAE 
grades for disease phenotypes that will be considered in each phenotype-specific analysis will be 
carefully considered by the proposal investigators, and will generally start at grades assigned for 
signs of symptomatic disease and/or use of medications for CHC treatment. 

 
Subject population:  
 

The study population will include up 13,141 long-term survivors of childhood cancer with 
genotype data enrolled in either CCSS or SJLIFE. Genetic ancestry has been previously 
determined via principal components analysis. We plan to perform analyses in both European 
and non-European ancestral subgroups. For all phenotypes, we will only include study 
participants with both genotype and phenotype data, and who also meet inclusion criteria for 
phenotype-specific analyses (e.g., limiting breast cancer analyses to female survivors only) as 
well as inclusion criteria typically applied in GWAS (i.e., meets missingness, heterozygosity, sex 
discordance, and relatedness thresholds). 
 
Explanatory variables:  
 
The primary explanatory variables of interest are polygenic risk scores comprised of common 
(>1% minor allele frequency) imputed or sequenced genetic variants identified in genome-wide 
GxT interaction association analyses performed in survivor cohort datasets. 
 
Additional covariates: 
 
 Study cohort participation status (SJLIFE/CCSS) 
 Sex 
 Age at last follow-up/contact 
 Age at death 
 Cancer diagnosis group 
 Year of cancer diagnosis 
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 Age at diagnosis 
 Subsequent breast cancer (Yes/No); include diagnosis ages for all occurrences 
 Subsequent basal cell carcinoma (Yes/No); include diagnosis ages for all occurrences 
 Multiple subsequent malignant neoplasms (Yes/No): excluding BCC; include diagnosis ages 

for all occurrences 
 Congestive heart failure/cardiomyopathy: all CTCAE grades ≥3, including grade onset age 
 Coronary artery disease: all CTCAE grades ≥3, including grade onset age 
 Hypertension: all CTCAE grades ≥2, including grade onset age 
 Diabetes mellitus (abnormal glucose metabolism): all CTCAE grades ≥2, including grade 

onset age 
 Dyslipidemia: all CTCAE grades ≥2, including grade onset age 
 Genetic ancestry (calculated via principal components analysis) 
 Height 
 Weight 
 Body mass index 
 Smoking history 
 Alcohol use history 
 Physical activity (CDC-based definition) 
 Radiation therapy, total prescribed dose to any of seven major regions: head, neck, chest, 

abdomen, pelvis, legs, arms (Yes/No; dose) 
 Total body irradiation (Yes/No; dose) 
 Allogeneic bone marrow transplant history (Yes/No) 
 Hypothalamic-pituitary axis RT (Yes/No; dose) 
 Heart RT (Yes/No; dose) 
 Alkylating agents (Yes/No; dose [cyclophosphamide ED]) 
 Anthracyclines (Yes/No; dose [doxorubicin ED]) 
 Heavy metals (Yes/No; dose [cisplatin ED]) 
 Epipodophyllotoxin (Yes/No; dose) 
 Vinca alkaloids (Yes/No) 
 Ifosfamide (Yes/No) 
 Glucocorticoids (Yes/No) 
 Splenectomy history (Yes/No) 
 Nephrectomy history (Yes/No) 
 
Analytic approach: 
 
Aim 1: Identify and catalog treatment-specific genetic effects in survivors of CAYA cancer. 
 
Methods and data analysis: For each of the 10 phenotypes, we will: (a) characterize etiological 
pathways and evaluate relevant clinical risk factors and their associations with the CHC/trait; 
and (b) identify treatment-specific genetic effects in the survivor data that are set aside for 
resource building.  

• Etiological pathways: In order to define relevant clinical risk factors for each specific 
CHC/trait and determine how they should be modeled statistically in downstream genetic 
analyses, a necessary first step is to characterize the many potential etiological 
pathways driving therapy-associated CHC/trait risks. Sex, ancestry (race/ethnicity), 
attained age, CAYA cancer diagnosis, age at CAYA cancer diagnosis, and treatment 
exposures and doses will be considered as key biological variables, as appropriate. 
Published risk prediction models in the survivorship literature will also be considered, as 
appropriate. 
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• Discovering treatment-specific genetic effects: We will use Cox regression for time-to-
event phenotypes or generalized linear models26 (GLMs) for continuous and prevalence-
binary phenotypes. We will test for GxT interaction associations on a genome-wide 
scale, including using recently developed “2-stage” approach with a screening stage 
followed by an interaction testing stage, to increase power while controlling type I 
error.27,28 We will also consider analyses stratified by treatment exposures (and sex or 
other key biological variables, if appropriate) coupled with tests for the heterogeneity of 
stratum-specific genetic effects.29 These genome-wide association analyses will be 
conducted with all measured or imputed common (minor allele frequency >1%) biallelic 
genetic variants, assuming an additive genetic inheritance model. 

 
Aim 2: Develop and evaluate survivor-enriched PRS that appropriately account for treatment-
specific genetic effects seen in survivors of CAYA cancer. 
 
Methods and data analysis: For each of the selected phenotypes, we will: (a) identify relevant 
published “baseline” (general population) PRS; (b) innovate an approach to create survivor-
enriched PRS; and (c) compare the predictive ability of survivor-enriched PRS against other 
clinical/genetic risk prediction models. 

• Baseline genome-wide PRS: Genome-wide PRS derived from current methods with 
suitable reference GWAS/meta-analyses (Table 1) will serve as baseline PRS. 

• Survivor-enriched PRS: We propose to: (a) directly apply and/or (b) adapt existing 
methods23-25 that have been shown to improve the trans-ethnic generalizability of PRS. 
Direct applications of these methods involve treating subgroups of survivors with specific 
treatments like a distinct ethnic population. The potential drawback is that these methods 
would effectively re-weight every selected genetic variant with association estimates 
from GWAS conducted in survivors, dominating the final survivor-enriched PRS. Thus, 
we propose a key adaptation: re-weight SNPs only if they exhibit both statistical 
evidence for treatment effect modification in survivor cohort analyses and in silico 
evidence of regulatory or functional activity. 

• PRS tuning and testing: We intend to “develop”, “tune”, and “test” (three key steps of 
machine learning and prediction model-building) the survivor-enriched PRS in 
independent survivor datasets using up to 3 major splits of SJLIFE/CCSS data. Using 
established performance metrics (see below), prediction models including survivor-
enriched PRS will be compared to models with: (a) survivor-specific clinical risk factors 
only (e.g., therapy-based risk scores), and (b) baseline genome-wide PRS. 

• Performance metrics: Association statistics (e.g., odds or hazard ratio, linear regression 
coefficient) will be evaluated to compare disease risk or mean SD change between 
ranked non-overlapping tiers of individuals with PRS meeting pre-specified percentile 
cut-off values (e.g., top 1%, top 10%, top 20%). Incremental R2 is another prediction 
reliability statistic,30 defined by the increment in R2 (or Nagelkerke’s R2 for binary 
phenotypes) upon adding PRS to a (nested) model of other covariates. Established 
prediction (discrimination and calibration) metrics31 such as the mean squared error 
(MSE) for continuous phenotypes, and the area under [receiver operating characteristic 
or ROC] curve (AUC) and Brier score for binary phenotypes will also be evaluated. 

 
Aim 3 (Secondary): Evaluate the prediction performance of survivor-enriched PRS for selected 
phenotypes in survivors from racial/ethnic minority populations. 
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Methods and data analysis: We will evaluate survivor-enriched PRS developed in survivors of 
European ancestry in non-Hispanic Black and Hispanic survivor subgroups, using the methods 
described above.  
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Proposed Figures and Tables 

Table 1: Demographic and clinical characteristics of childhood cancer survivors in training/validation 
datasets 

Variable 
Training Validation 

No. % No. % 
Gender 

Male 
Female 

Age at evaluation (years) 
18-25
26-35
36-45
46-55
>55

Body mass index (kg/m2) 
<25 

≥25 and <30 
≥30 and <35 
≥35 and <40 
≥40 

Smoking history 
Ever smoker (yes) 

Physical activity 
Met CDC physical activity 
recommendations 

Age at diagnosis (years) 
0-4
5-9
10-14
>14

Diagnosis 
Leukemia 
Hodgkin lymphoma 
Non-Hodgkin lymphoma 
Central nervous system malignancy 
Kidney 
Neuroblastoma 
Soft tissue sarcoma 
Other malignancy 

Relevant cancer therapy exposures 
(Depends on phenotype) 

Phenotype 
Distribution or case status 
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Table 2: Genetic variants in survivor-enriched PRS, adjusted univariate gene-by-treatment interaction associations with phenotype risk 

Survivor PRS type 
PRS LD/P 
thresholds rsID Chr BP NEA EA EAF 

log OR  
PRS weights 

(95% CI) P 
Nearest gene, 
within 5 kb 

           

           

           

           

           

           

           

           
Abbreviations: PRS, polygenic risk score; LD, linkage disequilibrium; rsID, genetic variant identifier (dbSNP build 151); Chr, chromosome; BP, base position, GRCh38 (hg38) build; 
NEA, non-effect (reference) allele; EA, effect (risk) allele; EAF, effect allele frequency; OR, odds ratio; CI, confidence interval; P, p-value; kb, kilobases. 
 
 
 
Table 3: Prediction performance of phenotype risk models in training and validation samples 

Dataset Risk prediction model OR (95% CI) OR P 
Nagelkerke's 

R2 AUC (95% CI) AUC P AP (95% CI) 
Training Clinical model       
 General population PRS       
 Survivor-enriched PRS       
 Composite PRS       
  General population PRS       
  Survivor-enriched PRS       
Validation Clinical model       
 General population PRS       
 Survivor-enriched PRS       
 Composite PRS       
  General population PRS       
  Survivor-enriched PRS       

Abbreviations: PRS, polygenic risk score; OR, odds ratio; CI, confidence interval; P, p-value; AUC, area under the receiver operating characteristic curve; AP, area under the precision-
recall curve. 
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