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1. Background and Rationale 

Over 80% of children diagnosed with cancer are long-term survivors (survival for five years or 

more after cancer diagnosis) in the US and Canada due to advances in cancer treatment1,2. 

Improving the quality of life of long-term childhood cancer survivors is a priority since they face 

an increased risk of developing chronic health conditions due to their exposures to specific 

cancer treatments3. For female survivors, compromised reproductive function is a significant 

concern4. Studies have shown that specific cancer treatments can adversely affect ovarian 

function, leading to abnormal timing of menopause5,6. Among female childhood cancer 

survivors, menopause-related outcomes include primary ovarian insufficiency (POI, defined as 

naturally occurring menopause before 40 years old)7, which has two subcategories: acute ovarian 

failure (AOF, or permanent cessation of menstruation within 5 years of cancer diagnosis or 

failure to achieve menarche by age 18 years) and non-surgical premature menopause (NSPM, 

defined as menopause that develops naturally before age 40, among those with normal ovarian 

function for at least 5 years following cancer diagnosis). An estimated 11% of female childhood 

cancer survivors develop POI7, which is considerably higher than the estimated prevalence of 

POI in the general population (~1%)8. 

Extensive studies have been undertaken to identify treatment risk factors associated with 

compromised reproductive function following cancer treatment3,9. Chemotherapy agents, 

especially alkylating agents (such as busulfan, cyclophosphamide, lomustine, and procarbazine, 

etc.), can prevent cell division and growth by interacting with DNA and reduce the number of 

follicles for maturation and reproduction, increasing the risk for ovarian dysfunction5. Also, 

radiation to the ovary, abdominal or pelvic sites can induce genomic damage in oocytes and the 

surrounding granulosa cells, leading to either a decreased or exhausted ovarian follicle pool 

depending on the extent of the damage5.  

Although many fertility preservation options, such as oocyte and ovarian tissue cryopreservation, 

are available to preserve reproductive function7,8, female childhood cancer survivors report that 

making fertility preservation decisions is difficult10, especially since the individual risk for 

compromised reproductive function after treatment is unknown11. Well-established clinical risk 

factors and cancer treatments, including prescribed alkylating agents and radiation to abdomen, 

pelvis or total body irradiation12, have been evaluated as risk factors to develop risk prediction 

models for compromised reproductive function in female survivors. For example, our research 

group has used clinical predictors such as cumulative alkylating drug dose13, radiation exposure 

to the ovary, abdomen and pelvis, age at cancer diagnosis, and hematopoietic stem-cell transplant 

receipt to build models to predict AOF/NSPM risk for individual pediatric cancer patients at the 

time of cancer diagnosis14,16. The area under the ROC curve (AUCs) and average positive 

predictive value (APs) of the AOF clinical prediction model in the internal validation dataset are 

0.82 and 0.50, respectively14. The AUC/AP of the NSPM clinical prediction model (at 15 years 

post cancer diagnosis) is 0.73/0.10 when evaluated in the CCSS cohort15. These results indicate 

that apart from the clinical predictors, the inclusion of other relevant predictors will improve the 

predictive performance of predictive models for menopause-related phenotypes, especially for 

the female survivors at risk for NSPM. 
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A limitation of risk prediction models for AOF/NSPM is that the age at cancer diagnosis was 

used as the time origin in the definition of AOF/NSPM, which implies these models are meant to 

be used to predict an individual’s risk of menopause using age at diagnosis as the time origin. 

However, it is often of clinical interest in estimating female childhood cancer survivors’ risk of 

menopause at pre-specified ages (e.g., age 25, 40, etc.) following their cancer treatment. By 

assessing the risk of developing menopause at different pre-specified ages, i.e., “age-specific 

risk”, clinicians and female childhood cancer survivors can take actions to reduce the potential 

impact of the late effects of cancer treatment based on their age rather than by time since 

diagnosis. Therefore, it is important to assess both AOF and NSPM as POI status in predictive 

models to support clinical decision-making. Recently, our research group used clinical predictors 

to quantify a female survivor’s POI risk at several pre-specified ages. Clinical predictors such as 

race/ethnicity, age at cancer diagnosis, chemotherapy exposure (e.g., Cyclophosphamide, 

Busulfan, Melphalan, Procarbazine, and Ifosfamide etc.), bone marrow transplantation, and 

radiation dosage to the ovarian, abdomen, and pelvis sites were evaluated.  

Age at menopause is a heritable complex trait16,17. A meta-analysis of genome-wide association 

studies (GWAS) conducted in general population samples identified 54 single nucleotide 

polymorphisms (SNPs) at 44 genetic loci associated with age at menopause18. Studies have also 

shown that reproductive function phenotypes have overlapping genetic architectures. For 

example, a recent study indicated that reproductive performance, POI, and age at natural 

menopause share common genetic factors involved in DNA repair and maintenance17. Among 

survivors, Brooke et al. identified a novel haplotype associated with premature menopause risk 

among female childhood cancer survivors19, indicating differences between the genetic 

architectures for premature menopause risk in survivors exist. Therefore, we hypothesize that 

including genetic variants associated with reproductive function phenotypes (e.g., menarche- and 

menopause-associated SNPs) identified in general population GWAS and genetic analyses in 

childhood cancer survivors may improve the model performance of existing clinical-predictor 

only predictive models for POI risk in female survivors.  

Our proposal aims to improve the accuracy of risk prediction for menopause-related phenotypes, 

specifically AOF, NSPM, and POI, in female childhood cancer survivors using clinical and 

genetic information. To accomplish this goal, we propose to evaluate genetic risk in the form of a 

polygenic risk score (PRS), or a score that combines the estimated effects of many disease-

associated genetic variants reported in published GWAS. PRSs have been proposed as a genetic 

risk prediction tool for a wide range of diseases20–22; a clinically-useful PRS would allow 

clinicians to identify individuals at elevated risk of disease, thus informing disease screening23, 

therapeutic interventions24, and life planning25 to prevent or delay the onset of disease. To our 

knowledge, PRSs for reproductive function phenotypes have not been developed to predict risk 

for menopause-related phenotypes in survivors or in the general population. The evaluation of 

the general population PRS for these menopause-related phenotypes in survivors may not only 

have clinical utility for the survivor population, but can also provide further insights into the 

relative contribution of general population PRS to menopause phenotypes in childhood cancer 

survivors. 
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Therefore, we aim to: 1) construct and validate a PRS for menopause-related phenotypes based 

on results from published GWAS of complex reproductive function phenotypes conducted in the 

general population; and 2) develop a risk prediction model incorporating the validated PRS for 

the risk of developing menopause-related phenotypes and clinical risk factors associated with 

reproductive phenotypes in female childhood cancer survivors to generate a user-friendly clinical 

and genetic risk score system. This system could provide clinicians with the means to estimate a 

female survivor’s risk for menopause-related phenotypes, thus informing clinical decision-

making regarding fertility preservation. 

2. Specific Hypotheses and Aims  

Hypotheses:  

H1: Common variants and/or low-frequency variants may contribute to changes in the 

reproductive function of female survivors of childhood cancer, affecting the timing of 

menopause (for example, acute ovarian failure [AOF], non-surgical premature menopause 

[NSPM], and primary ovarian insufficiency [POI]). 

H2: Along with relevant clinical predictors (e.g., cancer treatments), incorporating genetic risk 

profiles in the form of polygenic risk scores (PRS) may improve the performance of predictive 

models for menopause-related phenotypes (specifically AOF, NSPM, and POI) among female 

childhood cancer survivors.  

Aims: 

Aim 1: Identify existing PRS for menopause-related phenotypes, if available, or develop and 

validate PRS using susceptibility variants identified to date for menarche-/menopause-related 

phenotypes in genome-wide association studies (GWAS) conducted in the general population. 

Aim 2: Develop and validate predictive models that include both the validated PRS and clinical 

predictors to accurately predict the risk of menopause-related phenotypes among childhood 

cancer survivors and translate the predicted risk of menopause-related phenotypes into a clinical 

and genetic risk score system. 

2a) Use existing baseline predictive models for menopause-related phenotypes if available, or 

develop and validate new predictive models that only include the clinical predictors (e.g., 

demographic information, cancer treatment, etc.), if none exists; 

2b) Examine the discrimination ability of the validated PRS (derived from Aim 1) to 

discriminate: 1) AOFs vs. non-AOFs, 2) NSPMs versus survivors whose menopause age is 

greater than 40, and 3) POIs versus survivors whose menopause age is greater than 40. Compare 

the utility of the PRS in these three menopause-related phenotypes, as well as compare the 

predictive power of the PRS to the clinical predictive models derived from Aim 2a). 

2c) Include both the PRS (derived from aim 1) and clinical predictors (identified in aim 2a) in 

the predictive models for menopause-related phenotypes and compare the model performance of 

prediction models constructed in 2a) and 2b). 
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Aim 3: Assess whether PRS that include or reconcile treatment-specific SNP effects identified in 

previous GWAS conducted in female cancer survivors19 improve the prediction performance of 

the predictive models for menopause-related phenotypes in comparison to PRS constructed from 

the general population. 

3. Analysis Framework 

Outcomes of Interest  

There are four possible outcomes (ovarian status): AOF, NSPM, surgical premature menopause 

(SPM, defined as long-term female childhood cancer survivors who had bilateral oophorectomy 

procedure after cancer treatment), and normal. SPM is treated as a competing risk, since once a 

female childhood cancer survivors experienced SPM, she is no longer at risk of developing other 

conditions that are of research interest. 

Base on the proposed aims, the outcomes of interest in this study include:  

1) AOF (Yes/No) 

2) NSPM (Yes/No) at specific time after the cancer diagnosis (e.g., NSPM status at 15 years 

following cancer treatment)  

3) POI (Yes/No) and age at POI onset 

The definitions of outcomes of interest: 

AOF is defined as the permanent cessation of menstruation within five years of cancer diagnosis 

for individuals who had menarche before cancer treatment, or failure to achieve menarche by age 

18 years for individuals who did not have menarche before cancer treatment26. 

NSPM is defined as menopause that develops naturally before age 40, among those with normal 

ovarian function for at least 5 years following cancer diagnosis4. 

POI is a combination of AOF and NSPM, defined as either: (1) experiencing menopause 

naturally before the age of 40 years for individuals who had menarche before cancer treatment, 

or (2) never experiencing menarche by the age of 18 years for individuals who did not have 

menarche before cancer treatment26,27.  

Two variables are associated with the outcomes of interest:  

1. The ovarian status; 

2. The age at AOF/NSPM/POI onset 

The ovarian status has been determined by two means: 1) Using the above-established definition, 

on the basis of patients’ self-reported menstrual history information; or 2) manual review by 

endocrinologists (Drs. Sogol Mostoufi-Moab and Charles A. Sklar) for ambiguous cases, using 

the patient responses for menstrual history questions in the baseline and follow-up 1, 4 and 5 

questionnaires. Age at menopause is available via the CCSS surveys. The questions on menstrual 

history and age at menopause in these questionnaires are provided below. 
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CCSS survey prompts for menstrual history:  

- Have you ever had a menstrual period naturally? 

o If yes, at what age did you have your first menstrual period? 

- Have you ever taken birth control pills or female hormones to regulate your periods? 

- Are you currently experiencing menstrual periods? 

o If no, at what age did you last have a menstrual period naturally? 

o If no, what type of menopause? (normal or early menopause, surgical) 

 

Subject Population 

The data source for the primary analysis is from the Childhood Cancer Survivor Study (CCSS). 

CCSS is a multi-institutional retrospective cohort study of over 20,000 childhood cancer 

survivors, of which 11,336 are female13 and 2958 females childhood cancer survivors of 

European ancestry have provided GWAS data in the CCSS original cohort. We will include 

expansion cohort GWAS data if it is available. 

European ancestry subpopulation with GWAS data 

The numbers of AOF and NSPM cases in the subpopulation that have GWAS data are estimated 

assuming that the distribution of ovarian status is the same as the parent CCSS study sample (i.e., 

the event rates of AOF, NSPM, SPM and normal are the same as they are in the original study 

CCSS study sample).  

Subpopulation 1: To examine the ability of PRS to discriminate those at risk for AOF from 

those at risk of NSPM and normal female childhood cancer survivors, we have subpopulation 1 

with an estimate of 208 AOF cases. 

Subpopulation 2: To examine the ability of PRS to discriminate those at risk for NSPM from 

normal female childhood cancer survivors, we will exclude the female survivors with AOF. We 

estimated that approximately 2750 female childhood cancer survivors would be included, with 

about 161 NSPM cases. 

Subpopulation 3: There are approximately 2,958 female childhood cancer survivors of European 

ancestry with GWAS data in CCSS, with 369 POI cases. 

Inclusion and exclusion criteria 

Inclusion criteria: 

Long-term (≥5-year) female survivors who: 

- Were diagnosed before the age of 21 years with eligible cancer types; 

- Provided biospecimens for DNA genotyping; 

- Are of European genetic ancestry; 

- Had complete treatment exposure data, including chemotherapy radiation therapy; 

- Provided menstrual history information, including age at menarche, age at last menstrual 

period, current menstrual status, and the causes of menopause (surgical or non-surgical), 

if applicable.  
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Exclusion criteria: 

Long-term (≥5-year) female survivors who:  

- Were exposed to a cranial or pituitary radiation dose higher than 30 Gy; 

- Had a history of tumors in the hypothalamus or pituitary region; 

- Had a history of Turner or Down’s Syndrome; 

- Had a secondary malignancy within 5 years of primary cancer diagnosis. 

 

Exploratory Variables 

a) Baseline variables 

- Date of Birth (age at follow-up) 

- Date of Diagnosis (age at diagnosis) 

- Cancer diagnosis 

o Leukemia, central nervous system (CNS) cancers, Hodgkin lymphoma, non-

Hodgkin lymphoma, Wilms’ tumor, neuroblastoma, soft-tissue sarcoma, or bone 

tumors 

- Smoking status (Current/Ever/Never/Unknown) 

- Alcohol history (Yes/No) 

b) Genetic factors 

Polygenic risk score (constructed using susceptibility variants identified to date for menarche-

/menopause-related phenotypes in GWAS conducted in the general population) 

c) Cancer Treatment 

- Chemotherapy 

o Any chemotherapy exposure (Yes/No) 

o Type and dose of  chemotherapy agent: Methotrexate, BCNU (Carmustine), 

Bleomycin, Busulfan, Carboplatin, Cis-Platinum, Cyclophosphamide (Cytoxan), 

Daunorubicin (Daunomycin), Doxorubicin (Adriamycin), Epirubicin, Idarubicin, 

Ifosfamide, Melphalan, Mitoxantrone, Nitrogen Mustard, Thiotepa, VM-26 

(Teniposide), VP-16 (Etoposide), CCNU (Lomustine), Chlorambucil, Myeleran, 

Procarbazine. 

o Route of administration: intramuscular (IM), Intrathecal (IT), Intravenous (IV), 

IV, IM or Intra-arterial (IA), oral, sub-Q. 

o Dosage (mg/m2) 

o Cyclophosphamide-equivalent dose28 

- Radiation therapy 

o Radiation exposure to the total body, abdominal, and pelvic body regions 

(Yes/No) 

o Maximum prescribed radiation dose to the total body, abdominal, and pelvic body 

regions 

o Average radiation dose to the pituitary gland 

o Minimum and maximum radiation dose to the right and left ovaries 
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o Hematopoietic stem-cell transplant (Yes/No) 

o Bone marrow transplantation (Yes/No) 

Method 

To achieve the proposed specific aims, we will: 1) construct the PRS for POI risk, and 2) use the 

constructed PRS and the clinical predictors to build prediction models for POI risk using the 

CCSS data. 

Aim 1: Construction of PRS for menopause-related phenotypes using findings from general 

population GWAS  

The PRSs that will be evaluated in survivor data require two components: (1) external GWAS/ 

meta-analyses results; and (2) an external process for PRS construction and validation. 

Step 1: GWAS selection 

1) GWAS results: Summary statistics from GWAS and meta-analyses recently conducted in the 

general population for menarche- and menopause-related phenotypes are publicly available. A 

summary table describing these GWAS is available in the Appendix. To construct PRS, we will 

extract the following summary statistic information for each of the selected GWAS:  

- SNP/variant identifiers (e.g., chromosome, base pair position, human genome 

assembly/build) 

- Effect allele (allele corresponding to the direction of effect) 

- Reference allele (non-effect allele) 

- Effect allele frequency 

- Regression coefficient (SNP effect size) 

- Standard error (of the regression coefficient) 

- Sample size 

- P-value 

Any GWAS/meta-analysis conducted without appropriate standard sample/variant quality 

control procedures or incomplete summary statistic information (e.g., unspecified 

reference/effect alleles) will be excluded. Below are inclusion criteria for the reference GWAS 

that will be used to inform PRS: 

- GWAS conducted in general population sample(s) of predominantly European ancestry 

- Sample size ≥10,000 

- Phenotype definition in GWAS/meta-analyses is relevant for study of menopause-related 

phenotypes in survivors 

Since the genetic architectures of primary ovarian insufficiency and other reproductive 

function phenotypes in survivors may substantially overlap, reference GWAS for 

multiple menarche-/menopause-related phenotypes may be evaluated. In this case, we 

will consider multi-trait GWAS methods (e.g., GenomicSEM29, MTAG30) to re-estimate 

effect sizes before constructing the PRS. Phenotypes considered in the reference GWAS 

include: 
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o Primary ovarian insufficiency; 

o Early menopause: Natural cessation of menopause before age 45 years; 

o Age at natural menopause; 

o Age at menarche; 

o Reproductive lifespan: the difference between age at menopause and age at 

menarche. 

Step 2: PRS construction 

In this study, we plan to use the phenotype and genomic data from the UK Biobank resource that 

has been centrally quality-controlled31 for PRS construction and validation. The UK Biobank 

Study is a prospective cohort study consisting of approximately 500,000 individuals from across 

the United Kingdom32. 

Construction: UK Biobank data for participants that do not overlap with selected reference 

GWAS will be partitioned into training and test datasets. Using self-reported data for age at 

menarche and menopause in the UK Biobank, we will define individuals who experience 

menopause naturally before the age of 40 years as POI. The training dataset will be used for PRS 

construction. We will employ several approaches to construct the PRS. The pruning and 

thresholding approach will be used as a benchmark; popular Bayesian approaches, such as 

LDpred33, PRS-CS34, and penalized regression-based methods like lassosum35 will also be 

considered. The UK Biobank test dataset will be used for internal PRS validation before 

evaluation in survivor data. We will use a logistic regression model with appropriate model 

covariates (e.g., age, ancestry) to evaluate the PRS (continuous or quantile) as a predictor of 

menopause-related phenotypes in the test dataset.  

PRS Evaluation: We will evaluate the calibration, discrimination, and prediction ability of the 

candidate PRS using the calibration curve, AUC, and AP. Finally, we will select the PRS 

generating the best overall performance for further evaluation in survivors. 

Aim 2  

Statistical models 

Logistic regression for AOF prediction 

AOF is defined as the permanent loss of ovarian function within five years of the cancer 

diagnosis or no menarche after cancer diagnosis by age 18 years. The AOF status for all included 

survivors has been determined due to the inclusion criteria: survival for five years or more after 

cancer diagnosis who were at least 18 years old at their most recent follow-up. We will use 

logistic regression, a popular prediction technique for binary outcome variables. 

Weighted logistic regression for NSPM/POI prediction 

For NSPM: The NSPM risk at a specific time post cancer treatment is of clinical interest. To 

determine the NSPM status (Yes/No) at a specific time after cancer treatment, we need to know 

the menstrual history (ovarian status) and age at menopause. For binary outcomes, we can 

employ the logistic regression model. However, the outcome status is not always observable due 

to censoring. For example, assuming we are interested in the NSPM risk after 15 years of cancer 

treatment, a survivor’s NSPM status would be censored if she was in her ninth year after cancer 
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treatment at her last follow-up and had normal menstrual function. Censoring is a concern in the 

analysis as the censored individuals can develop the outcomes of interest. To account for the 

censored observations, we will employ the inverse-probability-of-censoring weighting (IPCW)36 

method. The IPCW weights are obtained by modeling the censoring process using the same set 

of covariates, such as age at diagnosis and radiation dosage to the ovary, for modeling the NSPM 

status. Censored individuals will thus contribute to the risk model through the IPCW weights. 

Individuals with known NSPM status will be given weights in the estimation of the logistic 

regression model. Therefore, we call this model “weighted logistic regression”. 

For POI: Similarly, we need to collect the menstrual history (ovarian status) and age at 

menopause to determine if a survivor developed POI (Yes/No). Censoring is also a concern 

when modeling the POI risk. For example, a survivor’s POI status was censored if she was 27 at 

her last follow-up and had normal menstrual function. A similar analysis framework used for 

modeling the NSPM risk at a specific time post the cancer treatment will be used. i.e., the IPCW 

method will be used to account for censoring, and weighted logistic regression will be used to 

model the POI risk. 

Competing risk 

Apart from censoring, the competing risk event of surgical premature menopause (had bilateral 

oophorectomy) needs to be considered. Female childhood cancer survivors who had bilateral 

oophorectomy before the age of 40 would not develop menopause naturally (i.e., are no longer at 

risk of natural menopause). The competing risk is considered in the IPCW method37, where there 

is an indicator variable for the event (menopause, menstruation, or surgical premature 

menopause). 

Other modern machine learning methods can be similarly modified to model the risk of 

NSPM/POI by using weighted observations. 

Aim 2a) Clinical predictor models: We have used logistic regression and random forest to 

estimate the AOF risk, and weighted logistic regression and random forest for NSPM risk 

prediction using clinical predictors in our previous investigations14,15. We are currently using the 

weighted logistic regression method and XGBoost38 that include clinical predictors, such as age 

at diagnosis, type of diagnosis, Cyclophosphamide-equivalent dose28 and radiation dosage to the 

ovary, to build models for age-specific POI risk. We intend to use these clinical models for the 

menopause-related phenotypes that we have built under a previously approved CCSS (separate) 

project as the benchmark. 

Aim 2b) PRS model (constructed from SNP effects identified in the general population): To 

examine the discrimination ability of the PRS (on its own) for different menopause-related 

phenotypes, we will build a logistic regression model for AOF risk prediction and separate 

weighted logistic regression models for estimating the NSPM risk at a specific time post cancer 

treatment and POI risk. We will use PRS as a continuous or categorical (e.g., PRS quantiles) 

variable to investigate the association separately. We will compare the performance of the PRS 

in different menopause-related phenotypes using metrics such as AUC, AP, and scale Brier 

score.  
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Aim 2c) PRS constructed from SNP effects identified in the general population + clinical 

predictor models: Similarly, we will build a logistic regression/weighted logistic regression 

prediction model that includes both the constructed PRS and clinical predictors, including age at 

cancer diagnosis, chemotherapy exposure (e.g., Cyclophosphamide, Busulfan etc.), bone marrow 

transplantation, and radiation dosage to the ovary, abdomen, and pelvis to predict  the risk for 

menopause-related phenotypes. We will deal with censoring and competing risk as in Aim 2a). 

We will compare the prediction model performance (Aim 2a, 2b, and 2c) by computing the 

incremental improvements in AUC, AP, and scaled Brier score39. 

Aim 3: PRS including treatment-specific SNP effects + clinical predictor models 

We will build appropriate logistic regression models that include clinical predictors and PRS 

which incorporate treatment-specific SNP effects identified in previous GWAS in survivors19 to 

predict the risk of menopause-related phenotypes. We will compare the incremental 

improvement in evaluation metrics as illustrated in Aim 2b) and Aim 2c)39 

Performance assessment 

Model selection for all Aims described above is based on prediction performance, including 

calibration40 and discrimination. The AUC41, the AP37, and the scaled Brier score42 will be used 

to assess prediction ability. A model-based framework, including calibration slope, will be used 

to evaluate calibration. We will compare the prediction model performance by computing the 

incremental values in AUC, AP, and scaled Brier scores39.  
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Conceptual Figures and Tables 

Aim 1: Odds ratio vs PRS quantiles vs PRS quantiles for menopause-related phenotypes 

1) Odds ratio vs PRS quantiles, evaluated in the general population 

 

Figure 1: Odds ratio and 95% CI for PRS quantiles in the general population test data. 

2) Odds ratio vs. PRS quantiles, evaluated in the female childhood cancer survivors  

 

Figure 2: Odds ratio and 95% CI for PRS quantiles among the female childhood cancer 

survivors. 

3) Summary of estimated performance for PRS constructed from the general population 

data 

Table 1*: PRS prediction performance in the general population test data for menopause-related 

phenotypes  

Metric Pruning and thresholding  LDpred PRS-CS Lassosum 

AUC  

(95% Confidence 

interval) 
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Metric Pruning and thresholding  LDpred PRS-CS Lassosum 

AP  

(95% Confidence 

interval) 

   

 

Scaled Brier score 

(95% Confidence 

interval) 

   

 

*Note: Table 1 is applicable for all menopause-related phenotypes (AOF, NSPM and POI)  

Aims 2 and 3: Risk prediction performance of selected models for PRS in female survivors in 

CCSS 

 

Table 2*: Risk prediction performance of selected models for PRS in female survivors in CCSS 

 Aim 2a)  

Clinical 

predictor model  

Aim 2b)  

PRS model  

Aim 2c) PRS 

conducted from the 

general population+ 

predictor model  

Aim 3) PRS including the 

treatment-specific SNP 

effects + clinical predictor 

model  

AUC  

(95% 

Confidence 

interval) 

    

AP  

(95% 

Confidence 

interval) 

    

Scaled brier 

score 

(95% 

Confidence 

interval) 

    

*Note: Table 2 is applicable for all menopause-related phenotypes (AOF, NSPM and POI)  
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Calibration curves 

 

Figure 3: Calibration curves for the best models in Aims 2, 3  
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Appendix 

Table 1 Summary of reference GWAS studies or meta-analyses for menarche-/menopause 

related phenotypes conducted in the general population 

  Phenotype: Age at menarche Phenotype: age at natural menopause 

Study Elks,et al.,2013 (Nat Genet) 

 

Day, et al., 2015 (Nat Genet) 

Meta-analysis 

component 

yes Yes 

Number SNP 

associations 

30 loci 54 

Discovery 

cohort 

87,802 Caucasian women 38,968 European women 

Replication 

cohort 

14,731 Caucasian women 14,435 European women 

Genotyping 

platform 

Affymetrix and Illumina Illumina iSelect array (iCOGs) 

Number of 

QCed SNPs 
∼2.5 million ∼2.6 million 

Whether 

imputed 

yes Yes 

Participant 

inclusions or 

exclusions 

women of European ancestry with a 

valid age at menarche between 9 and 

17 years were included 

Inclusion: women with age at natural 

menopause 40–60 years. 

Exclusion: women with menopause 

induced by hysterectomy, bilateral 

ovariectomy, radiation or chemotherapy, 

and those using hormone replacement 

therapy (HRT) before menopause 

Phenotype 

measurement 

Recalled by the participants Questionnaire: self-report 

Phenotype 

transformation 

or case 

definition 

Age at the first menstrual 

period(questionnaire can be found 

here)  

Age at last menstrual period 

SNP genetic 

effect model 

additive Additive 

Adjustment 

covariates 

birth year study, seven principal components 

 

 

  

https://www.nature.com/articles/ng.714?page=12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661791/
https://static-content.springer.com/esm/art%3A10.1038%2Fng.714/MediaObjects/41588_2010_BFng714_MOESM24_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fng.714/MediaObjects/41588_2010_BFng714_MOESM24_ESM.pdf
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