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Background & Rationale 
Diabetes mellitus (DM) is a complex heritable metabolic disorder characterized by insulin resistance (type 2) or 
insulin deficiency (type 1). In the general population, DM is associated with significant morbidity including 
retinal disease, chronic renal insufficiency, neuropathy, cardiovascular disease, and premature death.1 
Confirmed by several recent studies, survivors of childhood cancer demonstrate an elevated risk of DM.2-10 
Despite being a serious late effect of cancer therapy, susceptibility to DM is highly variable, which limits risk 
prediction and prevention efforts. Therefore, the objective of this study is to develop a risk prediction model for 
DM among childhood cancer survivors enrolled in the Childhood Cancer Survivor Study (CCSS) by leveraging 
both clinical and genetic factors. We aim to build a simple risk prediction model that ultimately could be 
used to identify survivors of childhood cancer at highest risk for diabetes upon completion of cancer 
treatment. 
 
Diabetes Mellitus in Childhood Cancer Survivors: A recent report by Mostoufi-Moab et al. using data from the 
CCSS indicated that the risk of DM was nearly two times higher in survivors compared with siblings (relative 
risk=1.9, 95% confidence interval [CI]: 1.6-2.4).11 Notably, the risk of DM in survivors of childhood cancer 
appears to be greatest among those treated with abdominal irradiation and/or total body irradiation (TBI). Two 
studies reported an increased risk of DM in children with Wilms tumor treated with abdominal irradiation,3,10 
and several studies identified an increased prevalence of DM among survivors exposed to TBI as part of the 
conditioning regimen for allogeneic bone marrow transplantation (BMT).2,4,5,7-9 Data from the CCSS provide 
additional evidence that childhood cancer survivors exposed to abdominal irradiation have an increased risk of 
DM.6 Compared to unaffected sibling controls, survivors of high-risk neuroblastoma were 7-times more likely to 
report DM (odds ratio [OR]=6.9, 95% CI: 3.5-13.9), whereas survivors of Wilms tumor and Hodgkin lymphoma 
(HL) were twice as likely to report DM (OR=2.1, 95% CI: 1.1-4.0 and OR=2.1, 95% CI: 1.2-3.5, respectively). 
Furthermore, among these same cancer diagnoses, there was no increased risk of DM in survivors who were 
spared abdominal irradiation. Among those who received TBI, there was also a strong and increased risk of 
DM compared to siblings (OR=12.6, 95% CI: 6.2-25.3), particularly among survivors of acute myeloid leukemia 
(AML) exposed to TBI (OR=17.7, 95% CI: 6.4-49.4).6 However, these factors do not fully explain why some 
survivors develop DM, while others do not.11 
 
Variability in development of DM in survivors, even among those with similar diagnoses and treatment 
exposures, suggests that genetic susceptibility is an additional modifying factor. Through a number of genome-
wide association studies (GWAS), genetic factors related to risk for DM have been identified.1,12,13 We know 
that both type I and type II DM are polygenic traits, with unique genetic loci identified for type I DM14 and type II 
DM.12,13 Based on our preliminary studies, we hypothesize that the genetic risk for DM among survivors may 



overlap factors related to risk in the general population but may also include unique loci that pose additional 
risk based on treatment exposures. 
 
An important gap in clinical care for childhood cancer survivors is incorporating clinical and genetic factors into 
robust risk prediction models for specific long-term complications, such as DM. Therefore, the objective of this 
proposal is to develop a clinical and genetic risk prediction model for DM among survivors of childhood cancer. 
We hypothesize that an integrated clinical and genetic risk prediction model will be superior to risk prediction 
models that rely on clinical factors alone or genetic factors alone. 
 
Primary Aim 

1. Develop an integrated clinical and genetic risk prediction model for DM among childhood cancer 

survivors. 

a. Evaluate the ability of traditional diabetes risk factors measured at survivorship baseline and clinical 

characteristics of cancer diagnosis and treatment to predict DM in childhood cancer survivors. 

b. Evaluate the ability of genetic variants associated with diabetes in the general population and 

unique to diabetes risk among childhood cancer survivors to predict DM in childhood cancer 

survivors. 

c. Determine improvement in risk prediction by the addition of genetic factors to a clinical model. 

2. Validate the integrated clinical and genetic risk prediction for DM among childhood cancer 

survivors in an independent population. 

Analytic Framework 

This analysis will use existing data within the CCSS to address our specific aim. The analytic methods 
described below will be finalized with input from CCSS statisticians and collaborators. 
 
Study Population: The study population will consist of the 5,173 childhood cancer survivors enrolled in the 
Original CCSS Cohort (diagnosed 1970-1986) with genotype data available through dbGaP. In this eligible 
population, there are 394 survivors with self-reported DM as of the June 1, 2017 data release. Validation 
populations are outlined below (see “Validation”). 
 
Outcome: Diabetes cases will be defined in a consistent manner as previous analyses of diabetes in CCSS: 
those who report being told by a health care practitioner that they have diabetes or the use of medication 
related to diabetes management (CTCAE Grade 2+). Non-diabetics will be considered CCSS participants who 
never report diabetes diagnosis or medication in follow-up examinations. Individuals reporting diabetes at 
baseline will be excluded from primary analyses, but may be considered in secondary or sensitivity analyses. 
 
Demographic and Clinical Risk Factors: In our risk prediction model, we will include traditional risk factors that 
are considered to modify any individual’s risk of diabetes, as well as clinical risk factors for DM identified in the 
CCSS and other studies: 

• Cancer diagnosis 

• Year of cancer diagnosis 

• Age at cancer diagnosis 

• Age at Baseline and Follow-up 1 – Follow-up 5 (baseline age to be used for risk prediction; follow-up 
age may be used for refining risk prediction in secondary analyses) 

• Sex 

• Genetically determined ancestry (calculated ancestry–specific principal components) 

• Height at Baseline and Follow-up 1 – Follow-up 5 (baseline BMI to be calculated for risk prediction; 
follow-up measures may be used for refining risk prediction in secondary analyses) 

• Weight at Baseline and Follow-up 1 – Follow-up 5 (baseline BMI to be calculated for risk prediction; 
follow-up measures may be used for refining risk prediction in secondary analyses) 

• Radiation therapy field (any, brain, abdominal, and total body) and dose 

• Chemotherapy (any, alkylating agents, anthracyclines, corticosteroids) and dose (for alkylating agents 
and anthracyclines) 



The optimal representation for each cancer characteristic will be chosen based on the type of coding that 
individually offers the best improvement in area under the curve (AUC). 
 
Analysis: Our primary analysis will be the development of a diabetes risk prediction model that incorporates 
clinical and genetic factors. We will build and present results using receiver-operating characteristic (ROC) 
curves using predicted values from logistic regression models. To build a comprehensive risk prediction model 
we will employ a forward selection procedure and select covariates based on improvement in AUC. We will 
begin with traditional risk factors and subsequently include cancer treatment characteristics to build a clinical 
risk prediction model; our approach is shown in Example Table 1, below. We will retain risk factors that 
improve AUC by ≥0.01.  
 
Example Table 1. Forward-selection of covariates in a clinical risk prediction model of diabetes in the CCSS. 
Each row of data represents a model that is inclusive of risk factors named in previous rows. 

 Logistic regression model Risk prediction 

Predictor OR P-value AUC 
DeLong’s 

pairwise p-
value 

Age at last follow-up, years     

Sex, female vs male     

Body mass index, kg/m2     

Genetic estimates of ancestry     

Cancer diagnosis, category     

Age at cancer diagnosis, years     

Radiation therapy     

Chemotherapy     

 
Next, we will develop genetic risk scores (GRSs). Specifically, we will construct both unweighted and weighted 
GRSs for diabetes based on genetic loci identified in 1) population-based genome-wide association studies 
(known loci GRS) and 2) genome-wide association studies among childhood cancer survivors (novel loci 
GRS). Genetic variants associated with diabetes risk generally have similar effect sizes, which excludes cases 

of inherited metabolic disorders related to diabetes (see 
Figure).13 For this reason, we will construct an unweighted 
GRS as the sum of risk-conferring alleles at a known and/or 
novel locus. We will also assess weighted GRSs where the 
weights are derived from population-based GWAS for the 
known loci and CCSS discovery population for the novel 
loci. From our GWAS of diabetes in CCSS we have 
observed that variants tend to have slightly larger effect 
sizes than estimated in the general population, but that 
effect estimates also do not widely vary between individual 
variants. For these reasons, we anticipate the unweighted 
GRS will be most appropriate for obtaining robust estimate 
of diabetes risk prediction in childhood cancer survivors.  

In the general population, there are 69 previously identified genetic loci that contribute to diabetes risk (see 
Appendix). It is well-established that increasing the number of risk-conferring genetic loci, even below 
statistically significant thresholds, improves phenotype risk prediction.15 Therefore, we will explore risk 
prediction for loci suggestive of diabetes association in our CCSS discovery population and have identified 29 
genetic loci (P<1e-6) that may explain a cancer survivor’s predisposition to develop diabetes. For each unique 
risk locus and source (population-based vs. childhood cancer survivors), we will count the number of risk-
conferring alleles across all loci to create an unweighted and weighted GRS. Any known variants that are 
identified in both populations will only be counted in the known loci GRS. From the best clinical risk prediction 
model, we will then calculate the improvement in AUC for three types of GRS: 1) known loci GRS only, 2) 
novel loci GRS only, and 3) known loci GRS and novel loci GRS. We will also assess the AUC for unadjusted 
models of the known loci GRS and novel loci GRS individually. Any model with AUC >0.7 will be considered to 
have good predictive value for diabetes risk among childhood cancer survivors. DeLong’s pairwise p-value will 

Figure. Genetic effect estimates for diabetes by risk 

allele frequency in the DIAGRAM consortium. 



be calculated to statistically test the fit of models with a GRS to the best clinical model. The best clinical model 
and GRS will be validated in an independent sample of childhood cancer survivors. 
 
Power: We used the easyROC webtool (http://www.biosoft.hacettepe.edu.tr/easyROC/) to calculate power to 
show non-inferiority of the GRS-extended prediction model compared to the clinical risk prediction model. We 
have 99% power to detect a 0.05 improvement in AUC given our available sample size in the CCSS. For 
validation of the clinical and GRS-extended prediction models, we need at least 15 cases and 75 controls to 
have 80% power to show AUC of 0.7. 
 
Validation: We propose two populations for validation. (1) CCSS Expansion Cohort – approximately 3,000 
childhood cancer survivors diagnosed between 1987 and 1999 are included in the CCSS Expansion Cohort 
with whole genome sequencing data now publicly available. Assuming a modest 2% prevalence of DM in a 
childhood cancer survivor population, we anticipate 60 cancer survivors will have developed DM (16 treated 
with abdominal irradiation; 44 not treated with abdominal irradiation). Dr. Armstrong (co-investigator) will 
facilitate the incorporation of data from this assessment. (2) St. Jude LIFE Study – an ongoing cohort of 3,006 
long-term survivors being following at St. Jude Children’s Research Hospital. There are currently 760 
participants in the St. Jude LIFE Study who have an abnormal glucose metabolism based on clinical 
assessment. Dr. Robison (co-investigator on this application) will facilitate the incorporation of data from this 
assessment. An alternative validation strategy is to divide the participating cohorts into random subsets for 
discovery and validation. This approach may be employed if temporal trends between the cohorts seems 
evident. 
 
  

http://www.biosoft.hacettepe.edu.tr/easyROC/
http://www.biosoft.hacettepe.edu.tr/easyROC/
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APPENDIX 
Appendix Table. Genetic index variants for loci associated with diabetes in population-based genome-wide 
association studies: UK Biobank, and DIAGRAM 201612 and 201713 meta-analyses. 

SNP Chr Pos PVAL COHORT 

rs41463147 1 120554134 5.13E-09 UKBB 

rs340882 1 214145731 1.25E-08 UKBB 

rs4846569 1 219771721 8.80E-09 DIAGRAM_2017 

rs1260326 2 27730940 2.16E-10 UKBB 

rs17387355 2 36465267 1.74E-08 UKBB 

rs6757251 2 43734847 1.90E-10 DIAGRAM_2017 

rs10193447 2 60552476 1.30E-08 DIAGRAM_2017 

rs2972145 2 227101309 6.32E-11 UKBB 

rs11712037 3 12344730 8.60E-13 DIAGRAM_2017 

rs1496653 3 23454790 8.62E-10 UKBB 

rs2014830 3 50172397 2.75E-09 UKBB 

rs7428936 3 64710850 1.00E-08 DIAGRAM_2017 

rs11708067 3 123065778 8.80E-13 DIAGRAM_2017 

rs4402960 3 185511687 2.70E-25 DIAGRAM_2017 

rs7651090 3 186996086 2.00E-11 DIAGRAM_2016 

rs1046319 4 6304286 1.51E-16 UKBB 

rs60780116 4 185708807 7.40E-08 DIAGRAM_2017 

rs6885132 5 14768092 1.06E-09 UKBB 

rs28650790 5 55861464 7.40E-10 DIAGRAM_2017 

rs2307111 5 75003678 6.23E-08 UKBB 

rs116454070 5 101837362 8.46E-08 UKBB 

rs78408340 5 102338739 2.38E-11 UKBB 

rs41302867 6 7240876 5.79E-12 UKBB 

rs7451008 6 20673880 3.80E-37 DIAGRAM_2017 

rs1264372 6 30769726 7.70E-09 UKBB 

rs2260051 6 31591918 1.03E-15 UKBB 

rs3134603 6 32126002 2.08E-16 UKBB 

rs9273363 6 32626272 9.88E-38 UKBB 

rs116647495 6 33614871 1.20E-08 UKBB 

rs11759026 6 126792095 5.80E-10 DIAGRAM_2017 

rs4719433 7 15065003 1.84E-11 UKBB 

rs849142 7 28185891 3.97E-15 UKBB 

rs10954284 7 130114298 1.20E-08 DIAGRAM_2016 

rs13262861 8 41508577 5.42E-13 UKBB 

rs3802177 8 118185025 1.70E-17 DIAGRAM_2017 

rs62530366 8 145536056 1.90E-08 DIAGRAM_2017 

rs10965247 9 22132729 4.89E-21 UKBB 

rs9410573 9 84311800 8.55E-13 UKBB 

rs10760280 9 126112812 7.30E-08 DIAGRAM_2017 

rs11257659 10 12309269 2.70E-08 DIAGRAM_2017 

rs810517 10 80942620 1.30E-12 DIAGRAM_2017 

rs10882098 10 94444793 1.40E-26 DIAGRAM_2017 



rs535931506 10 97334990 7.11E-08 UKBB 

rs34872471 10 114754071 5.28E-125 UKBB 

rs2292626 10 124186714 1.80E-12 DIAGRAM_2017 

rs2237895 11 2857194 2.90E-17 UKBB 

rs5213 11 17408404 4.23E-11 UKBB 

rs1061810 11 43877934 5.30E-09 DIAGRAM_2017 

rs11602873 11 72460762 4.79E-10 UKBB 

rs7933855 11 92323970 1.30E-09 DIAGRAM_2016 

rs76895963 12 4384844 1.05E-16 UKBB 

rs4931479 12 27948615 8.03E-08 UKBB 

rs2612069 12 64501559 7.70E-08 DIAGRAM_2016 

rs2258238 12 66221060 1.89E-09 UKBB 

rs56348580 12 121432117 2.50E-08 DIAGRAM_2017 

rs500443 13 80748024 2.59E-11 UKBB 

rs34715063 15 38873115 9.56E-08 UKBB 

rs4774420 15 62117975 2.70E-08 DIAGRAM_2017 

rs952471 15 77776498 4.00E-10 DIAGRAM_2017 

rs9936385 16 52376670 4.70E-11 DIAGRAM_2016 

rs1558902 16 53803574 4.70E-25 DIAGRAM_2017 

rs2917677 16 69750849 2.92E-09 UKBB 

rs8056814 16 75252327 3.70E-11 DIAGRAM_2017 

rs2925979 16 81534790 2.70E-08 DIAGRAM_2017 

rs78761021 17 9780387 5.50E-08 DIAGRAM_2017 

rs4239217 17 36098987 1.51E-12 UKBB 

rs3111316 19 13038415 6.09E-08 UKBB 

rs429358 19 45411941 1.40E-10 DIAGRAM_2017 

rs2023681 22 30599562 3.90E-09 DIAGRAM_2017 

 


