
1.Study Title:  Linear Mixed Effects Quantile Regression (LMQR) Model 
 
 
2. Working Group and Investigators :  
 
This analysis will be conducted under Epidemiology/Biostatistics Working Group with 
the following investigators:  
 
Mi-Ok Kim   miok.kim@cchmc.org  513-636-1895 
Mai Zhou   mai@ms.uky.edu  859-257-6912  
Wendy Leisenring wleisenr@fhcrc.org  206-667-4374 
Yutaka Yasui          yutaka.yasui@ualberta.ca       780-492-4220 
Kevin Oeffinger        oeffingk@mskcc.org   212-639-8469   
 
 
3. Background and Rationale 
 
Linear mixed effects model is arguably the most popular analytic tool when regression is 
concerned about a continuous response and a group of covariates in dependent data. The 
dominant paradigm in the mixed effects model literature has been a Gaussian structure in 
which the errors are homogenous and the covariates exert a pure location shift effect on 
the response variable, uniformly across the conditional distribution. Under the uniform 
covariate effects on the conditional distribution, the conditional mean structure is of the 
primary interest. In some applications, however, we need to consider a broader class of 
covariate effects or the covariate effects on other statistical quantities such as the 
conditional 90th percentile of the response. We propose a linear mixed effects quantile 
regression (LMQR) model in such applications.  
 
We illustrate the assumptions and limitations of the Gaussian structure using obesity 
study in survivors of acute lymphoblastic leukemia (ALL). Obesity has been identified as 
a potential late effect of cancer therapy for childhood cancer in survivors of acute 
lymphoblastic leukemia (ALL) and the role of cranial radiation therapy (CRT) has been 
questioned as a potential risk factor. Both problems have been investigated either by 
comparing means of age-, race- and/or gender-adjusted body mass index (BMI) or by 
comparing proportions of obese or over-weight. Such analyses tend to be snap shots and 
are reasonable summaries of the potential late effect only under rather strict assumptions 
of normality and/or homogeneity. If the variance of BMI is affect by the late effect of 
cancer therapy differentially by CRT dosage or the BMI distribution is skewed, the least 
squares analysis under the Gaussian paradigm can be biased. An extreme example where 
these analyses are simplistic or can be even misleading is when cancer therapy has a 
polarizing late effect, making the ALL survivors either obese or underweighted. The least 
squares mean analysis would not find any significant difference and analysis on the 
proportions would only find a half of the truth. A more practical example where the least 
squares analysis is limiting is as follows: the late effect of cancer therapy varies across 
the BMI distribution, for example, making BMI of the ALL survivors bigger increasingly 
at higher percentiles. The least squares analysis will ignore such increasing magnitude of 
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the late cancer therapy effect at the higher conditional percentiles and provide a one 
number summary. Quantile regression enables one to investigate the late cancer therapy 
effect at various conditional percentiles directly, without assuming the effect to be same 
as on the mean, and complements the least square analysis by providing a more complete 
picture of the late cancer therapy effect across the conditional distribution.  
 
Proposed by Koenker and Bassett (1978), quantile regression extends the idea of ordering 
and quantiles from a univariate analysis to regression analysis, using an asymmetric L1 
type loss function, and provides a framework for modeling statistical quantities of interest 
other than the conditional mean. The methodology is well developed for linear models in 
independent data. Koenker (2004) extended the methodology to a longitudinal data and 
proposed a quantile regression model with a random subject effect. In this study we 
propose a more comprehensive approach to the methodology in dependent data that can 
accommodate general random effects, permitting random coefficients quantile regression 
model analysis.  
 
In this methodological study of LMQR model we propose to use the Childhood Cancer 
Survivor Study (CCSS) as a motivating example and to do ancillary analyses of its data 
to illustrate its applications. Specifically, we would like to use the baseline data that was 
used in Oeffinger KC. (2003). Oeffinger KC. (2003) reported that after adjusting for age 
at diagnosis and cranial radiation dose, ALL survivors did not have a significantly higher 
odds for being overweight compared with their nearest-age living siblings, but their odds 
for being obese were significantly increased for the group received cranial radiation dose 
≥ 20 Gy. This suggests that the late effect of cancer therapy with cranial radiation dose ≥ 
20 Gy affects the BMI differentially across its distribution. An ancillary analysis of this 
data with LMQR model can complement Oeffinger KC. (2003)’s analysis by 
supplementing its findings with information about the late effect of cancer therapy on 
other parts of the conditional distribution.  
 
We also propose to use longitudinal BMI measurements of the CCSS as another 
motivating example and application of the methodology. LMQR model analysis can 
investigate whether change in BMI over time is differentially affected by cancer therapy 
at higher percentiles than at the median or lower percentiles. This is particularly 
interesting if the analysis of the baseline data finds an increasing magnitude of the late 
effect on BMI at higher percentiles. Whether such increasingly pronounced late effect at 
higher percentiles will be also manifested over time can be answered by LMQR analysis. 
The height of ALL survivors is an additional independent interest as impaired linear 
growth is a well-recognized complication in this population. However, many patients 
achieve a final height between the 5th and the 95th percentile and the true incidence of 
linear growth impairment has not been investigated in this direction. We propose to use 
this as an additional motivating example.  
 
4. Specific Aims 

(1) to develop a comprehensive approach to the quantile regression 
methodology in dependent data that can accommodate a general class of 
random effects other than subject effects.  



 
(2) to apply the methodology to the Childhood Cancer Survivor Study (CCSS) 

to investigate  
  

(a) whether BMI in adult survivors of childhood ALL is differentially 
affected by cancer therapy across its distribution, when compared 
with BMI distribution of their nearest-aged siblings.  

 
(b) whether change in BMI over time in adult survivors of childhood 

ALL is differentially affected by cancer therapy across its 
distribution  

 
(3)  apply the methodology to the Childhood Cancer Survivor Study (CCSS) to 

investigate similar questions as (a) and (b) with respect to height.  
 

 
5. Analysis Framework 
 
For SA1 and SA2 we use age-, race- and gender-adjusted BMI as response variable and 
regress the so-called BMI z score on covariates such as age at cancer diagnosis, types of 
cancer treatment, and/or CRT dosage to investigate how the response is related to the 
covariates differently at every 10th percentile. In other words we fit 9 quantile regression 
models at every 10th centile. We adjust BMI using 2000 Census data and the covariates 
will be properly categorized, if appropriate and necessary.  
 
For SA3 and SA4, we define final height as stature at 18 years of age or older and regress 
the final height on covariates such as age, gender, race, age at cancer diagnosis types of 
cancer treatment, and/or CRT dosage for the relationships at every 10th percentile. 
Alternatively we can similarly adjust final height for age, race and gender using 2000 
Census data and regress the adjusted final height on the covariates.  
 
SA1 is concerned about the baseline CCSS data (available as of November 2000) that 
was analyzed in Oeffinger, KC. (2003).  
 

(a) Outcomes of interest : weight and height measurements of ALL survivors and 
their nearest-age living siblings 

 
(b) Subject population to be included: Out of ALL survivors (n=2,447) who were 

alive and 18 years of age or older at time of completion of questionnaire, 
those for whom complete treatment data, height and weights are available 
should be included as cases. Controls are a cohort of the nearest-age living 
sibling for whom complete treatment data, height and weights are available.  

  
(c) Explanatory variables for cases 

 
(i) age, gender, race, age at cancer diagnosis, whether adopted or not,  



 
(ii) treatment, types of chemotherapy, CRT dosage, Cumulative CRT 

dosages, whether they were diagnosed with another cancer 
 

(d) Explanatory variables for controls 
 

(i) age, gender, race, whether adopted or not, whether diagnosed with 
a cancer or not.  

 
SA2 is concerned about follow up data (follow-up, follow-up 2, follow-up 3) of the 
CCSS that are available. 
 

(a) Outcomes of interest: weight and height measures of ALL survivors 
 
(b) Subject population to be included: out of those ALL survivors who are 

included in the analysis of SA1, all for whom height and weights are 
available  

 
(c) Explanatory variables: whether they were diagnosed with another cancer 
 

SA3 and SA 4 do not require independent data collection.  
6. Special Consideration:  
 
We request two identifiers be included in the data, a subject identifier to identify 
longitudinal measurements from the same ALL survivors and a sibling identifier to match 
ALL survivors and their siblings.  
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