Largest GWAS of osteosarcoma prioritizes BRAP as a candidate susceptibility gene

Laura E. Egolf, PhD¹,2†, D. Matthew Gianferante, MD, MPH¹†, Diptavo Dutta, PhD¹, Bryan Gorman, PhD³, Logan G. Spector, PhD⁴, Katherine A Janeway, MD, MMSC⁵, Donald A Barkauskas, PhD⁶, Douglas S. Hawkins, MD७, Richard Gorlick, MDø, Ana Patiño-Garcia, PhDø, Fernando Lecanda, PhD¹0, Philip J Lupo, PhD¹¹,¹, Michael E Scheurer¹¹,¹², Lindsay Morton, PhD¹, Gregory T. Armstrong, MD, MSCE¹³, Yadav Sapkota, PhD¹³, M. Monica Gramatges, MD, PhD¹⁴, Massimo Serra, MSc¹⁵,¹, Claudia Hattinger, PhD¹⁵,¹, Katia Scotlandi, MSc¹⁵, Fernanda Amary, MD¹७, Irene L. Andrulis, PhD¹ø, Jay S. Wunder, MD¹ø, Mandy L. Ballinger, PhD²₀,², David M. Thomas, FRACP, PhD²₀,²¹, Sara Cleland, MS³, Meredith Yeager, PhD¹,², Michael Dean, PhD¹,², Aurelie Vogt¹,², Jia Liu¹,², Belynda D. Hicks, MS¹,², Wen-Yi Huang, PhD¹, Mitchell J Machiela¹, Brenda M. Birmann²², Roger L. Milne²³-2⁵, Alan A. Arslan²⁶,², Roel Vermeulen²®, Adrienne M. Flanagan, MD, PhD²,³, Silvia Regina Caminada de Toledo³¹, Sharon A. Savage, MD¹, Stephen J. Chanock, MD¹, Lisa Mirabello, PhD¹*

- ¹Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA.
- ²Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 20877, USA. ³Booz Allen Hamilton, McLean, VA, USA.
- ⁴Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- ⁵Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- ⁶Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA.
- ⁷Department of Pediatrics, Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
- ⁸Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX.
- ⁹Department of Pediatrics/Medical Genomics Unit and Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- ¹⁰Center for Applied Medical Research (CIMA)-University of Navarra, IdiSNA, and CIBERONC, Pamplona, Spain.
- ¹¹REACH Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- ¹²Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- ¹³Departments of Oncology and Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
- ¹⁴Division of Hematology and Oncology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- 15 Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
- ¹⁶IRCCS Istituto Ortopedico Rizzoli, Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, Bologna, Italy.
- ¹⁷Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK.
- ¹⁸Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada.
- ¹⁹Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
- ²⁰Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- ²¹Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
- ²²Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
- ²³Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.
- ²⁴Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia.
- ²⁵Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.
- ²⁶Department of Obstetrics and Gynecology, New York School of Medicine, New York, NY, USA.
- ²⁷Department of Population Health, New York University School of Medicine, New York, NY, USA.
- ²⁸Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
- ²⁹Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, UK.
- ³⁰Research Department of Pathology, University College London, London, UK.
- ³¹Department of Morphology and Genetics; Adolescent and Children With Cancer Support Group (GRAACC) Hospital, Federal University of São Paulo, São Paulo, Brazil.
- [†]These Authors Contributed equally to this work.

Abstract Body: 2,499/2,500 characters (including spaces)

Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, and metastatic disease remains largely incurable. There are few known predisposing factors for sporadic OS. Large genome-wide association studies (GWAS) to identify common genetic susceptibility loci have been limited due to the rarity of OS. Here, we conducted the largest multi-institutional GWAS to date including 2,530 OS cases and 62,650 controls across multiple ancestries.

In a meta-analysis across three European ancestry sets (1,794 total cases and 59,540 controls), we identified two loci associated with OS at genome-wide significance. The top SNP was located at 12q24.13 (rs741334, P=4.0x10⁻⁹, odds ratio [OR]=1.3, 95% confidence interval [CI]=1.2–1.4) and was also significant in a combined meta-analysis across all ancestries (P=8.5x10⁻⁹). A second signal at 14p21.3 was significant only in the European ancestry sets (P=3.4x10⁻⁸, OR=1.9, 95%CI=1.5–2.3). We also identified suggestive ancestry-specific susceptibility loci in the African ancestry case-control set (240 cases and 2,627 controls; 1q41: P=1.65x10⁻⁷, OR=2.3, 95%CI=1.7–3.1) and in one Latin American set (206 cases and 190 controls; 10q21.1: P=9.96x10⁻⁸, OR=3.1, 95%CI=2.0–4.6). Interestingly, the 1q41 SNP was intronic in *ESRRG*, a gene involved in osteoblast differentiation and bone formation.

The top signal at 12q24.13 localized to a gene-dense region with high linkage disequilibrium and evidence for pleiotropy. We conducted several *in silico* analyses to characterize this locus and provide insights into potential functional mechanisms. Fine-mapping with epigenetic data from OS cell lines identified 14 causal SNPs. Among these SNPs, ENCODE enhancer-gene interaction models for OS cell lines and primary osteoblasts identified significant regulatory interactions for rs601663, which localized to the first intron of BRCA1-associated protein (*BRAP*). This SNP was predicted to alter the binding of multiple transcription factors including ZIM3. Separately, we identified *BRAP* as the top gene associated with OS in a transcriptome-wide association study (TWAS) meta-analysis across 48 GTEx tissues. BRAP directly binds and regulates BRCA1, which is part of the homologous recombination (HR) repair pathway; importantly, a large fraction of OS tumors have been reported to harbor an HR deficient mutational landscape.

In the largest GWAS of OS, we identified new genetic susceptibility loci and prioritized *BRAP* as an OS candidate gene.