Title: Genetic study of diabetes mellitus risk in diverse populations of survivors of childhood cancer: a report from the St. Jude Lifetime Cohort (SJLIFE) and the Childhood Cancer Survivor Study (CCSS)

Authors: Cindy Im, Achal Neupane, Jessica Baedke, Angela Delaney, Stephanie B. Dixon, Eric J. Chow, Melissa A. Richard, M. Monica Gramatges, Philip J. Lupo, Noha Sharafeldin, Smita Bhatia, Gregory T. Armstrong, Melissa M. Hudson, Kirsten K. Ness, Leslie L. Robison, Yutaka Yasui, Carmen L. Wilson, Yadav Sapkota

†These senior authors contributed equally to this work.

Affiliations:
1. Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
2. Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
3. Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
4. Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
5. Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
6. Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
7. Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, 35294, USA

Background: Diabetes mellitus (DM) is an established late effect of cancer treatment among long-term survivors of childhood cancer. Genetic factors underpinning DM in diverse populations of survivors have not been well studied.

Methods: We conducted a multi-ancestry genome-wide association study (GWAS) for clinically ascertained DM among survivors of European (EUR; N=3,102 with 261 cases) and African (AFR; N=574 with 43 cases) ancestry from SJLIFE. Replication analyses were performed between ancestries in SJLIFE and in EUR survivors in CCSS (N=5,965; 270 self-reported cases). Two published type 2 diabetes (T2D) polygenic risk scores (PRSs) were assessed in survivors: a 338-variant multi-ancestry PRS (N~1.4 million; 49% non-EUR descent) and a ~6.9 million-variant EUR-only PRS (N~160K; DIAGRAM Consortium and UK Biobank Study). Treatment-related DM risk effect modification was evaluated for abdominal irradiation and alkylating agents.

Results: In SJLIFE AFR survivors, one novel locus with suggestive significance was identified (5p15.2: OR=10.19, P=5.1x10^{-7}), replicating in both SJLIFE EUR (P=0.011) and CCSS EUR survivors (P=0.021). A EUR-specific genome-wide significant association at 8q11.21 (SNTG1 intronic variant; OR=1.99; P=4.4x10^{-8}) was replicated in CCSS (P=8.1x10^{-5}). Two other loci with suggestive associations (P<5x10^{-6}) in SJLIFE EUR survivors replicated in SJLIFE AFR survivors (P<0.05), achieving genome-wide significance in multi-ancestry meta-analysis (2p25.3: OR=2.05, P=4.5x10^{-8}; 19p12: OR=2.43 P=5.7x10^{-9}). Each of the three novel trans-ancestral loci overlapped putative Polycomb-repressed regions, i.e., chromatin-based gene regulation elements, in pancreatic cells and displayed treatment-related effect heterogeneity across ancestry groups. Notably, AFR survivors with risk alleles experienced disproportionately greater DM risk if treated with alkylating agents (2p25.3: OR=3.95; 19p12: OR=5.74; 5p15.2: OR=17.81). Increases in the DM odds per multi-ancestry PRS standard deviation were consistent in survivors across ancestries (SJLIFE EUR: OR=1.84, P=1.1x10^{-16}; SJLIFE AFR: OR=1.80, P=2.8x10^{-3}, CCSS EUR: OR=1.60, P=8.4x10^{-13}). However, DM risk association with the EUR-only PRS was absent in AFR survivors (OR=0.97, P=0.95).

Conclusions: Multi-ancestry genetic analyses revealed four novel DM risk alleles, including three trans-ancestral loci associated with disproportionately greater alkylating agent-related risk among African-ancestry survivors. Furthermore, an external multi-ancestry T2D PRS was associated with increased risk
in diverse ancestry survivors, whereas a EUR-only PRS was not useful for African-ancestry survivors. This study supports precision diabetes surveillance and survivorship care for all childhood cancer survivors, including those in minority ancestry groups.