ANTHRACYCLINE-ASSOCIATED RISK OF SUBSEQUENT BREAST CANCER IN FEMALE CHILDHOOD CANCER SURVIVORS: A REPORT FROM THE INTERNATIONAL CONSORTIUM FOR POOLED STUDIES ON SUBSEQUENT MALIGNANCIES

Yuehan Wang MSc1, Cécile M. Ronckers PhD1,2, Flora E. van Leeuwen PhD3, Chaya S. Moskowitz4, Wendy Leisenring5, Gregory T. Armstrong6, Melissa M. Hudson6, Florent de Vathaire7, Claudia E. Kuehn8,9, Michael A. Arnold10,11, Charlotte Demoor-Goldschmidt7,12,13, Daniel M. Green5, Tara O. Henderson14, Rebecca M. Howell15, Matthew J. Ehrhardt6, Joseph P. Neglia16, Helena J. van der Pal1, Leslie L. Robison6, Michael Schaapveld3, Lucie M. Turcotte16, Nicolas Waespe8,9,17, Leontien C.M. Kremer†1,18,19, Jop C. Teepen†1

†Joint last authors

1Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
2Department of Health Services Research, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
3Netherlands Cancer Institute, Amsterdam, The Netherlands
4Memorial Sloan Kettering Cancer Center, New York, NY, USA
5Fred Hutchinson Cancer Research Center, Seattle, WA, USA
6St. Jude Children’s Research Hospital, Memphis, TN, USA
7Radiation Epidemiology Team, INSERM U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
8Childhood Cancer Registry (ChCR), Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
9Pediatric Hematology and Oncology, University Children’s Hospital Bern, University of Bern, Bern, Switzerland
10Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO, USA
11Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
12Department of Pediatric Hematology and Oncology, University-Hospital of Angers, Angers, France
13Radiotherapy department, Francois Baclesse center, Caen, France
14University of Chicago Medicine Comer Children’s Hospital, Chicago, IL, USA
15University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
16University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
17CANSEARCH research platform in pediatric oncology and hematology of the University of Geneva, Geneva, Switzerland
18University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, The Netherlands
19Emma Children’s Hospital, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands

Corresponding author:
Yuehan Wang
Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
Telephone: +31-88-9725192
Background and aims

Female childhood cancer survivors have a well-established risk for developing subsequent breast cancer (SBC) associated with chest radiotherapy exposure. Growing evidence indicates that anthracycline-based chemotherapy may increase SBC risk in survivors, but the contributions of different anthracyclines and interactions with other factors are unclear. We analyzed the dose-dependent effects of individual anthracycline agents on developing SBC in an internationally pooled cohort.

Methods

The International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer includes female 5-year survivors from six cohort studies and one case-cohort study in Europe/North-America. Cox regressions evaluated anthracycline-associated risks for SBC adjusted for chest and pelvic radiotherapy, diagnosis age, and alkylating agents. Cumulative incidences were also calculated.

Results

After a median follow-up of 24.9 years (IQR 19.1-33.2) since primary cancer diagnosis in 17,903 women, 782 developed a first SBC. Dose-dependent increases in SBC risk were seen for doxorubicin (HR per 100 mg/m²: 1.24, 95% CI: 1.18-1.31); for daunorubicin, a borderline increase in SBC risk was observed (HR per 100 mg/m² 1.13, 95% CI: 0.97-1.33). Epirubicin was also associated with SBC risk (yes vs. no HR 3.23, 95% CI 1.58-6.59). For patients treated with or without chest-exposing radiation, HRs per 100 mg/m² of doxorubicin were 1.12 (95% CI: 1.02-1.22) and 1.26 (95% CI: 1.17-1.36), respectively. Joint effects of doxorubicin and chest radiation were less than multiplicative ($P_{multiplicative interaction}$=0.003) and compatible with additivity ($P_{additive interaction}$=0.93). Cumulative incidences of SBC by age of 40 for women who received both doxorubicin and chest radiotherapy, chest radiotherapy only, doxorubicin only, or neither treatment were 8.7%, 7.9%, 3.1%, 0.8%, respectively.

Conclusions

A clear dose-response relationship was observed between doxorubicin and SBC risk. Risk for women treated with both doxorubicin and chest radiotherapy was as expected if individual excess risks were summed. These results should be considered when adapting SBC surveillance guidelines.