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Introduction. The availability of large-scale, publicly available population-based germline 

exome- and genome-sequenced cohorts (e.g. ESP, 1000 Genomes, gnomAD, UK10K) holds 

tremendous promise for advancing genetic research, and can be used as a reference for 

orthogonal analyses. Generally, each cohort utilizes distinct analytic pipelines and individual-

level data (BAM/VCF) are frequently unavailable. The inability to match calling and filtering 

pipelines between a newly sequenced study and controls derived from a publicly available cohort 

can lead to inflated type I error.  

Methods. We utilized large-scale data from two cohorts sequenced in the same laboratory (4300 

children with cancer [cases], 597 cancer-free adults [controls]) to systematically examine the 

impact of both laboratory components (capture, library prep and sequencer) and variant-calling 

pipeline (single vs. multiple callers, joint vs. separate calling) elements on potential inflation, 

which can be large. We tested differences in the distribution of rare (MAF<1%) synonymous 

variants using Fisher’s exact test, expecting null results as synonymous variants are unlikely to 



be associated with cancer risk. To quantify type I error, we constructed quantile-quantile plots 

and determined lambda delta95 (λΔ95), which adjusts for the large number of variants with 

p=1.00.  

Results. When cases and controls are called using the same variant-calling and filtering pipeline, 

we observed minimal deviation of genes from the null distribution (λΔ95=1.04), even if laboratory 

components were different, and calling was either joint vs. separate. To investigate the effect of 

the variant-calling pipeline, we separated cases into two groups (n=2000 each) where all samples 

have same the laboratory components. We observed major inflation (λΔ95=1.16), which was 

diminished by using HaplotypeCaller only with the same post-calling filters on both groups 

(λΔ95=0.99). Given the HaplotypeCaller-only diminished inflation, we then compared controls 

(using HaplotypCaller only) with gnomAD. In this analysis, we once again observed substantial 

inflation (λΔ95=1.10), likely due to differences in post-calling variant filters, random forest for 

gnomAD and GATK hard filters for cases.  

Conclusion. Comparing variant frequencies between genomic datasets without implementing the 

same variant-calling and post-calling variant filtering pipeline can be problematic. Direct 

statistical comparisons using controls from publicly available sequenced cohorts need to be 

carefully considered and interpreted. Optimally, raw data from controls should be obtained and 

processed with cases in a dedicated pipeline.  


