A functional POT1 variant and risk of thyroid subsequent malignant neoplasm: A report from the Childhood Cancer Survivor Study

Short Title: POT1 and thyroid SMN in CCSS

Author Block: Melissa A. Richard1, Philip J. Lupo1, Lindsay M. Morton2, Yutaka Yasui3, Michael A. Arnold4, Joseph P. Neglia5, Lucie M. Turcotte6, Wendy M. Leisenring5, Stephen J. Chanock2, Joshua N. Sampson2, Gregory T. Armstrong3, Leslie L. Robison3, Smita Bhatia7, Maria M. Gramatges1. 1Baylor College of Medicine, Houston, TX; 2National Cancer Institute, Bethesda, MD; 3St. Jude Children's Research Hospital, Memphis, TN; 4Nationwide Children's Hospital, Columbus, OH; 5University of Minnesota, Minneapolis, MN; 6Fred Hutchinson Cancer Research Center, Seattle, WA; 7University of Alabama at Birmingham, Birmingham, AL

Abstract:

Purpose: Reduced telomere content has been associated with an increased risk for subsequent malignant neoplasms of the thyroid (thyroid SMN) in survivors of childhood cancer (PMID 24277454). However, variation in nine common single nucleotide polymorphisms (SNPs) that influence leukocyte telomere length was not associated with thyroid SMN (PMID 30377209). Here, we report results of a candidate gene approach investigating associations between thyroid SMN and genes functionally related to telomere maintenance.

Methods: Genome-wide SNP data were generated using the Illumina HumanOmni5Exome array in 5,324 5-year survivors of childhood cancer enrolled to the Childhood Cancer Survivor Study (CCSS), and imputed to the 1000 Genomes reference haplotypes. Of these 5,324 survivors, 117 developed thyroid SMN. We mapped 4,290 variants to 18 genes involved in telomere maintenance (TERC, TERT, RAD50, NHP2, POT1, TERF1, NBN, TPP1, MRE11A, TINF2, NOP10, PARN, ACD, TERF2, RAP1 (TERF2IP), WRAP53, CTC1, and RTEL1) and used RegulomeDB to annotate each variant by its projected functional impact. Time-to-event Cox regression was used for thyroid SMN, censored by date of any SMN, death, or last follow-up. For each functional SNP, hazard ratios (HR) were estimated, adjusting for sex, primary cancer diagnosis, neck radiation exposure (yes/no), alkylating agent exposure (yes/no), and thyroid nodules.

Results: Our analysis included 103 SNPs with a RegulomeDB score ≤ 2, signifying high likelihood for affecting transcriptional regulation. After Bonferroni correction (α=0.000485), an imputed variant in an intronic region of POT1 (Protection of Telomeres 1), rs58722976 (CCSS minor allele frequency = 0.2%), was associated with risk for thyroid SMN (adjusted HR=6.1, 95% CI: 2.4, 15.5, p=0.0001) and was present in 3 cases and 14 controls. Conclusions: Using a candidate gene approach, we observed an association between an intronic regulatory POT1 variant and risk for thyroid SMN in survivors. POT1 is a highly conserved gene encoding a key component of the...
shelterin complex, which protects telomere ends against DNA damage recognition and facilitates telomerase-mediated telomere elongation. The ENCODE Consortium identifies rs58722976 as a strong enhancer and DNase in multiple tissues, including the hematopoietic compartment. ENCODE ChIP-Seq data suggest that rs58722976 genotypes also affect protein binding of RAD21, SMC3, and CTCF, components of cohesin and a co-localizing protein that play key roles in maintaining genomic integrity. Germline variants in POT1 have been described in familial glioma, melanoma, colorectal cancer, chronic lymphocytic leukemia, and non-TP53 familial cancer syndromes. The results of this study suggest that intronic variation in POT1 may affect key protein binding interactions related to defects in telomere maintenance and affecting genomic integrity.

Author Disclosure Information:

M.A. Richard: None.
P.J. Lupo: None.
L.M. Morton: None.
Y. Yasui: None.
M.A. Arnold: None.
J.P. Neglia: None.
L.M. Turcotte: None.
W.M. Leisenring: None.
S.J. Chanock: None.
J.N. Sampson: None.
G.T. Armstrong: None.
L.L. Robison: None.
S. Bhatia: None.
M.M. Gramatges: None.

Sponsor (Complete):
Category and Subclass (Complete): CL02-03 Survivorship research
Research Type (Complete): Epidemiological research
Organ Site/Structures (Complete):
- **Primary Organ Site:** Pediatric cancers

*Choose Chemical Structure Disclosure Option:
NOT APPLICABLE. No compounds with defined chemical structures were used.

*Please explain reason for not disclosing (maximum 250 characters with spaces): NA
*Reference or patent application number: NA

Keywords/Indexing (Complete): Genetic polymorphism ; pediatric cancers ; Telomeres ; Thyroid cancer

Financial Support for Attendance (Complete):

Submission Fee (Complete): Your credit card order has been processed on Tuesday 13 November 2018 at 9:40 AM.

Status: Complete

For all log-in problems or technical questions, please contact the OASIS Helpdesk or call (217) 398-1792.
If you have any policy questions related to the AACR Annual Meeting 2019, please contact the AACR [E-mail: abstract@aacr.org; Phone: (215) 440-9300 or (866) 423-3965].

Leave cOASIS Feedback