Multiple new susceptibility loci identified in genome-wide association study of Ewing sarcoma

1. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
2. Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
3. German Consortium for Cancer Research (DKTK), Heidelberg, Germany
4. German Cancer Research Center (DKFZ), Heidelberg, Germany
5. Inserm U830, Équipe Labellisés LNCC, PSL université, Institut Curie, Paris, France.
6. SIREDO Oncology Centre, Institut Curie, Paris, France.
7. Unité de Génétique Somatique, Institut Curie, Centre Hospitalier, Paris, France.
8. Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., MD, USA.
9. Children’s Cancer Research Institute, St. Anna Kinderskrebsforschung, Vienna, Austria.
10. Service de Pédiatrie, Institut Gustave Roussy, Villejuif, France.
11. Division of Pediatric Hematology Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
13. Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli di Bologna, Bologna, Italy.
14. Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Spain.
15. Laboratory of Pediatrics, University of Navarra, University Clinic of Navarra, IdiSNA, Pamplona, Spain.
16. IHOPe, Centre Léon Bérard, Lyon, France.
17. Centre Léon Bérard, INSERM U1052, Lyon, France.
18. Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
19. Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA.
20. Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
21. Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA.
22. University Children’s Hospital of Essen, Essen, Germany.
23. University Children’s Hospital of Erlangen, Erlangen, Germany.
24. Gerhard-Domagk Institute of Pathology, University Hospital of Münster, Münster, Germany.
25. Institute of Genetic Epidemiology, LMU Munich, Munich, Germany.
26. Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
27. University Children’s Hospital of Heidelberg, Heidelberg, Germany.

*These authors jointly directed this work.
Abstract

Ewing sarcoma (EWS) is a rare pediatric tumor predominantly occurring in children of European ancestry and is characterized by the pathognomonic $EWSR1-FLI1$ fusion oncogene. To identify germline susceptibility loci associated with EWS risk, we performed a genome-wide association study (GWAS) meta-analysis of 749 EWS cases and 1,378 unaffected individuals of European ancestry from sample collections within the Institut Curie, National Cancer Institute and the Childhood Cancer Survivor Study. Our study replicated previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1 as well as identified novel loci at 6p25.1, 8q24.23, 20p11.22 and 20p11.23 (P-values $<5\times10^{-8}$). These seven EWS susceptibility loci discovered in only 749 cases make EWS one of the most productive GWAS studied cancers when considering a locus to case discovery ratio. All estimated effect estimates were high for cancer GWAS with odds ratios (ORs) in excess of 1.7 observed. These high per allele effects among relatively common germline variants are striking in light of the rarity of EWS cases and lack of evidence of EWS as part of a familial cancer syndrome and therefore suggest a distinctive genetic architecture for EWS. Interestingly, in silico bioinformatics analysis identified that most EWS susceptibility loci reside near GGAA nucleotide repeat sequences where binding of the $EWSR1-FLI1$ fusion protein occurs. ChIP-seq analyses confirmed in vivo binding of $EWSR1-FLI1$, suggesting germline variation in these regions could alter $EWSR1-FLI1$ binding and potentially deregulate neighboring genes. To identify genes with allele specific expression differences, we carried out expression quantitative trait locus (eQTL) analyses at each identified EWS susceptibility locus. We identified eQTLs for plausible candidate genes at 6p25.1 with $RREB1$, a RAS-responsive element, and at 20p11.23 with KIZ, a centrosomal stabilization protein. We also noted the 20p11.22 locus is near $NKX2-2$, a highly overexpressed gene in EWS, although no eQTL was
observed in our expression data. Furthermore, knockdown of \textit{EWSR1-FLI1} in EWS cell lines indicated a more than 2-fold difference in expression of \textit{RREB1} and \textit{NKX2-2}, further supporting the role of specific regulation of these genes by \textit{EWSR1-FLI1} and suggesting \textit{RREB1} and \textit{NKX2-2} may be transcription factors involved in core regulatory circuitries of EWS. Overall, our study suggests a distinctive underlying genetic architecture for EWS in which moderate risk common germline variants interact with \textit{EWSR1-FLI1} binding to alter expression of nearby target genes.