Title: Basal cell carcinoma risk prediction among long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study (CCSS)

Authors: Cindy Im,¹ Christina Boull,¹ Zhe Lu,² Hasibul Hasan,¹ Yadav Sapkota,³ Rebecca M. Howell,⁴ Michael A. Arnold,⁵ Miriam Conces,⁶ Louis S. Constine,⁷ Yutaka Yasui,³ Kirsten K. Ness,³ Melissa M. Hudson,³ Gregory T. Armstrong,³ Joseph P. Neglia,¹ Yan Yuan,² Lucie M. Turcotte¹

Affiliations

- 1. University of Minnesota
- 2. University of Alberta
- 3. St. Jude Children's Research Hospital
- 4. MD Anderson Cancer Center
- 5. University of Colorado
- 6. Nationwide Children's Hospital
- 7. University of Rochester Medical Center

Background: Basal cell carcinomas (BCCs) represent >50% of subsequent neoplasms among long-term survivors of childhood cancer. While general population BCC risk prediction models are available, models considering clinical features relevant to survivors are lacking.

Methods: To develop risk prediction models for experiencing any subsequent BCC by age 40 years, we used data from five-year survivors in CCSS. BCCs occurring ≥5 years after childhood cancer diagnosis were confirmed via pathology report or medical record review. Predictors included: demographics; childhood cancer diagnosis/age; treatment era; body region-specific cumulative radiotherapy (RT) doses; hematopoietic cell transplantation (HCT); chemotherapy drugs/doses; prior non-BCC skin neoplasms. Among the evaluated statistical learning algorithms, XGBoost was the best-performing algorithm. To assure generalizability, we assessed nested cross-validated prediction performance metrics (AUROC/AUPRC: area under the receiver operating characteristic curve/precision-recall curve). We compared our model with Children's Oncology Group Long-Term Follow-Up Guidelines (COG LTFU, v6.0) recommendations indicating yearly dermatologic screenings following any RT or HCT.

Results: Among 23,172 survivors, 1,164 developed BCCs (63% occurred <40 years of age). The XGBoost model showed good discrimination (AUROC=0.76, 95% CI: 0.74-0.78) and precision (AUPRC=0.28, 95% CI: 0.24-0.32). The most important predictors included diagnosis age and cumulative doses of cranial/neck RT, alkylators, and anthracyclines. The cross-validated BCC prevalence by age 40 was 4%, 17%, and 59%, respectively, in low (<10%), medium (10-49%), and high (\geq 50%) model-defined predicted risk groups. In comparison, the COG LTFU-based classification prediction performance metrics were significantly worse (AUROC=0.63, P<0.001; AUPRC=0.10, p<0.001). The BCC prevalence by age 40 years among survivors recommended for screening per COG LTFU was 11%; 63% of them were re-classified as low risk using our XGBoost model.

Conclusion: Once validated in the St. Jude Lifetime Cohort, implementation of our subsequent BCC risk prediction models will more accurately inform risk-/age-based screening recommendations which are currently unavailable for this high-risk population.